Update on vascular endothelial Ca\(^{2+}\) signalling: A tale of ion channels, pumps and transporters

Francesco Moccia, Roberto Berra-Romani, Franco Tanzi

Francesco Moccia, Franco Tanzi, Department of Biology and Biotechnologies “Lazzaro Spallanzani”, Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
Roberto Berra-Romani, Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, 3 Sur 2702, Colonia Volcanes Puebla 72410, Mexico
Author contributions: Moccia F wrote the manuscript; Berra-Romani R revised the manuscript; Tanzi F wrote the manuscript.
Correspondence to: Dr. Francesco Moccia, Department of Biology and Biotechnologies “Lazzaro Spallanzani”, Laboratory of Physiology, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy. francesco.moccia@unipv.it
Telephone: +39-382-987169 Fax: +39-382-987527
Received: May 17, 2012 Revised: July 4, 2012 Accepted: July 11, 2012 Published online: July 26, 2012

Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from a state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca\(^{2+}\) signals have long been known to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca\(^{2+}\) levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca\(^{2+}\) signals, ranging from brief, localized Ca\(^{2+}\) pulses to prolonged Ca\(^{2+}\) oscillations engulfing the whole cytoplasm. The well-defined spatio-temporal profile of the subcellular Ca\(^{2+}\) signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca\(^{2+}\) releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca\(^{2+}\) removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca\(^{2+}\) machinery in vascular ECs under both physiological and pathological conditions.

© 2012 Baishideng. All rights reserved.

Key words: Endothelial cells; Ca\(^{2+}\) signalling; Plasma membrane; Endoplasmic reticulum; Intracellular Ca\(^{2+}\) release; Ca\(^{2+}\) entry; Ca\(^{2+}\) removal; Ca\(^{2+}\) oscillations

Peer reviewers: Saobo Lei, Associate Professor, Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, 501 N Columbia Road, Grand Forks, ND 58203, United States; Claudio F Perez, PhD, Department of Anesthesia, Brigham and Women’s Hospital, GW Thorn Building, TH-726B, 20 Shattuck Street, Boston, MA 02115, United States

INTRODUCTION
It has long been known that an increase in intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_i\)) plays a key role in the intricate network of signal transduction pathways exploited by endothelial cells (ECs) to maintain cardiovascular homeostasis[1]. Due to its strategic location at the interface between the vascular wall and bloodstream, the endothelium is exposed to a myriad of transmitters (released by autonomic and sensory nerves or platelets), circulating hormones, autacoids, cytokines, growth factors, and drugs, as well as to mechanical stimuli, such as pulsatile...
stretch, shear stress, and changes in the local osmotic pressure.
Moreover, vascular ECs might serve as thermosensors and modulate peripheral vasoconstriction or vasodilation depending on the environmental temperature. A remarkable blend of membrane receptors, transporters, and ion channels, which are located both on the plasma membrane and within the intracellular Ca²⁺ reservoirs (namely, endoplasmic reticulum, lysosomes, and Golgi), may be utilized by ECs to detect and react selectively to the incoming stimulus with the most suitable Ca²⁺ signal. A number of excellent reviews have recently outlined features and activation mechanisms of Ca²⁺-permeable channels in vascular endothelium. The present article will survey the Ca²⁺ signaling toolkit whereby ECs shape their Ca²⁺ responses to chemical and mechanical stimuli by summarizing the most recent developments in the field. Recent work has shown that endothelial progenitor cells (EPCs), a subpopulation of mononuclear cells that are mobilized from bone marrow upon an ischemic insult, impinge on Ca²⁺ signals to proliferate, traffic to the injured tissue, and form capillary-like structures. However, we refer to a recent review from our laboratory for an exhaustive description of our current knowledge about the functional role and the molecular underpinnings of Ca²⁺ signalling in human EPCs.

Ca²⁺ SIGNALLING IN VASCULAR ECs

In resting, i.e., non-stimulated cells, [Ca²⁺]i is very low (around 100 nmol/L) due to the activity of various active mechanisms that remove Ca²⁺ out of the cytosol. More specifically, the plasma membrane Ca²⁺-ATPase (PMCA) and the sarco-endoplasmic reticulum Ca²⁺-ATPase (SERCA) extrude Ca²⁺ by direct ATP hydrolysis, while the Na⁺/Ca²⁺ exchanger (NCX) clears cytosolic Ca²⁺ by exploiting the Na⁺ gradient across the plasma membrane. An increase in [Ca²⁺]i up to 1 µmol/L is the key signal to activate vascular ECs following recruitment of either tyrosine-kinase linked receptors (TRKs) or G-protein coupled receptors (GPCRs) by growth factor and vasoactive agents, respectively. The endothelial Ca²⁺ response may comprise an initial Ca²⁺ spike, shaped by Ca²⁺ mobilization from the intracellular Ca²⁺ reservoir, followed by an intermediate plateau level due to Ca²⁺ entry across the plasma membrane. However, at low-dose agonist stimulation, the Ca²⁺ signal may adopt an oscillatory pattern driven by the interplay between intracellular Ca²⁺ release and Ca²⁺ influx from the extracellular space. Responding cells with an intermediate behavior between the extremes described above can also be found. Accordingly, in most microvascular ECs, chemical stimulation does not elicit a remarkable Ca²⁺ influx and results in Ca²⁺ mobilization from the intracellular store. Conversely, when the Ca²⁺ signal is uniquely modelled by Ca²⁺ entry, a sustained and monotonic increase in [Ca²⁺]i occurs. Mechanical stimulation may also affect vascular endothelium by causing an elevation in [Ca²⁺]i. Indeed, exposure of ECs to fluid shear stress, pulsatile stretch, and cell swelling may evoke both Ca²⁺ discharge from intracellular Ca²⁺ pools and Ca²⁺ influx through mechanosensitive channels on the plasma membrane. Recent studies have argued that ion channels serve as direct sensors of mechanical stimuli, but rather as a relay that is engaged by a yet to identify upstream receptor. Unlike the Ca²⁺ response to extracellular ligands, mechanosensitive Ca²⁺ signals normally lack the biphasic kinetics and exhibit either a transient or an oscillatory pattern. In a few cases, a dose-dependent stepwise elevation in [Ca²⁺]i was observed in cultured ECs exposed to laminar shear stress. The contact between air microbubbles and cultured ECs may also result in an intracellular Ca²⁺ wave. Finally, an increase in [Ca²⁺]i arises in vascular ECs upon contact with circulating leukocytes or metastasizing tumor cells.

Ca²⁺ RELEASE FROM INTRACELLULAR STORES

The endoplasmic reticulum (ER) houses the largest intracellular Ca²⁺ reservoir in ECs, amounting to approximately 75% of the total cellular storage capacity. A recent ultrastructural analysis has revealed that the endothelial ER consists of tubulovesicular structures that are interconnected at various sites to form a widespread network within the ECs. In the periphery of the cells, they lie immediately adjacent to the plasma membrane and the caveolae at the apical, lateral, and basal surfaces of the cells and occasionally run closely parallel to the plasma membrane itself. Intriguingly, the ER-plasmalemma coupling is tighter (around 8 nm) in macrovascular than in microvascular (around 87 nm) ECs. As Ca²⁺ entry may be governed by the physical interaction between an ER Ca²⁺-sensor and the plasmalemmal Ca²⁺-permeable channels (see below), this feature might help explain why microvascular ECs normally lack the plateau phase. In the middle of the cells, the tubulovesicular structures may be in close contact with the mitochondria, sometimes enveloping them, and are in continuity with the nuclear membrane. Ca²⁺ is sequestered into the ER lumen, where it attains a concentration of about 100-500 µmol/L, by high-affinity (Kₐ 1 µmol/L) SERCA pumps, which can be inhibited by pharmacological agents, such as the marine toxin thapsigargin and cyclopiazonic acid (CPA). Inhibition of the SERCA pump with either drug leads to Ca²⁺ store depletion, which indicates that ER membrane is constitutively leaky to Ca²⁺. Candidates to mediate the leak channel in a variety of cell types include polycystin-2, prenlinils, and the ribosome-translocon complex. No study has, however, hitherto addressed the molecular underpinnings of passive Ca²⁺ leak from ER in ECs. Calreticulin represents the major Ca²⁺ buffer within the ER lumen in all non-muscle cells, as well as in vascular endothelium. Maintenance of a constant luminal level of Ca²⁺ in ECs...
is also fulfilled by a number of additional Ca\(^{2+}\)-binding proteins, including calnexin, glucose-regulated protein (GRP)-78, and GRP-94. All these Ca\(^{2+}\) buffers also serve as molecular chaperones and their protein folding activity is regulated by ER Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{ER}\)) \[58,50,51\]. Monitoring of intraluminal Ca\(^{2+}\) levels in ECs transiently transfected with a cameleon-based Ca\(^{2+}\) probe targeted to the ER, Dil\(_x\), has shown that, in the presence of extracellular Ca\(^{2+}\), extracellular autocoids do not induce a massive decline in [Ca\(^{2+}\)]\(_{ER}\) \[42,10\]. Consequently, Ca\(^{2+}\)-dependent protein folding is largely maintained during physiological cell stimulation and does not activate any stress signaling pathway \[38,42\]. Conversely, a rapid drop in ER Ca\(^{2+}\) content occurs when ECs are stimulated in the absence of extracellular Ca\(^{2+}\) entry \[41\]. Owing to the large electrochemical gradient existing between ER lumen and the cytosol, rapid release of Ca\(^{2+}\) from the intracellular organelle occurs upon the opening of two largely homologous receptor types on its membrane, which are named for their affinity for either the cell metabolite inositol-1,4,5-trisphosphate (InsP\(_3\)) or the plant alkaloid ryanodine \[4,6,10\]. Ryanodine receptors (RyRs), in particular, may be engaged by either a local increase in intracellular Ca\(^{2+}\) levels trough a process called Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) or the second messenger, cyclic ADP-ribose (cADPr) \[44\]. The remaining 25% of the total stored Ca\(^{2+}\) in ECs is loaded in non-ER intracellular pools, mainly mitochondria, which contribute to agonists-induced intracellular Ca\(^{2+}\) signaling \[39-41\]. Ca\(^{2+}\) enters the organelles through a uniporter, present in the inner membrane, and can be exported via the stimulation of a mitochondrial NCX (NCX\(_{mito}\)) \[36,41\], thus creating a Ca\(^{2+}\) cycling system for the control of mitochondrial Ca\(^{2+}\) concentration that, under resting conditions, is equal to around 200 nmol/L in ECs \[49\]. Mitochondria give rise to an impressive network in ECs, which is in tight apposition with either Ca\(^{2+}\) release channels on the ER or Ca\(^{2+}\)- permeable pathways, mainly store-operated Ca\(^{2+}\) channels (SOCs), on the plasma membrane \[31,36\]. Acidic, lysosome-like vesicles may also serve as Ca\(^{2+}\) storage organelles in vascular endothelium \[35\]. Unlike the large network that is the ER, lysosomes constitute relatively small, discrete and mobile vesicles with a limited Ca\(^{2+}\) content, which can be discharged by NAADP \[60,61\]. An attempt to quantify the relative lysosomal Ca\(^{2+}\) content suggested the latter to amount to around 79% of the ER Ca\(^{2+}\) pool \[59\]. Such a value, which is in odds with a previous analysis of the relative capacities of intracellular Ca\(^{2+}\) storage organelles \[32\], does not truly reflect lysosomal Ca\(^{2+}\) levels. Indeed, unlike the large network that is the ER, lysosomes generally constitute relatively small, discrete and mobile vesicles with a limited Ca\(^{2+}\) content \[39\]. However, such acidic stores may be situated very close to the Ca\(^{2+}\)-releasing channels on ER. As a consequence, NAADP induces scattered, local Ca\(^{2+}\) signals that are capable of generating a global Ca\(^{2+}\) wave only by triggering further Ca\(^{2+}\) mobilization from InsP\(_3\)-Rs and/or RyRs via the CICR mechanism \[38\] (see below). Along with InsPs, cADPr, and NAADP, ECs may liberate intracellular Ca\(^{2+}\) in response to other second messengers, such as arachidonoid acid (AA) \[62\], whose intracellular target remains to be elucidated, and reactive oxygen species (ROS), such as H\(_2\)O\(_2\) \[53,56\] and superoxide anion (O\(_2^-\)), which directly evoke Ca\(^{2+}\) release from InsP\(_3\)-Rs \[57\]. As to the sphingolipid-derived messenger, sphingosine-1-phosphate (S1P), that may elicit intracellular Ca\(^{2+}\) release independently from InsP\(_3\)-Rs and RyRs \[10\] it has been shown that, when endogenously synthesized in autacoids-stimulated ECs, it modulates SOCs, but does not stimulate Ca\(^{2+}\) mobilization \[58\]. In blood vessels, however, plasma S1P may be produced and released by erythrocytes and platelets and induce Ca\(^{2+}\) mobilization in ECs upon binding to the Gi protein-coupled S1P receptor \[10\].

The latter, in turn, recruits phospholipase C (PLC) to generate InsP\(_3\) and, thus, stimulates InsP\(_3\)-Rs and activates SOCs \[60,61\].

Phospholipase C, InsP\(_3\), and InsP\(_3\)-receptors

The intracellular second messenger InsP\(_3\) liberates Ca\(^{2+}\) ions stored within the ER and, in ECs, is synthesized following activation of either GPCRs or TRKs \[61,62\]. InsP\(_3\) is a highly diffusible hydrophilic messenger that is produced by the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP\(_2\)). This reaction is catalyzed by a family of PLC isozymes, which, depending on the subtype, can be activated by G-proteins (G\(_{q/11}\)), phosphorylation or Ca\(^{2+}\) itself \[38,40\]. Another product of PIP\(_2\) hydrolysis is diacylglycerol (DAG), which stays within the plasma membrane where it either activates protein kinase C (PKC) or gates members of the transient receptor potential (TRP) canonical (TRPC) subfamily of Ca\(^{2+}\) permeable channels \[10\].

The 13 mammalian PLC isozymes (excluding alternatively spliced forms) identified to date are all single polypeptides and can be divided into five types: PLC\(_{\beta}\) (\(\beta\)-1-4), PLC\(_{\delta}\) (\(\delta\)-1-4), PLC\(_{\gamma}\) (\(\gamma\)1 and \(\gamma\)2), PLC\(_{\epsilon}\), PLC\(_{\zeta}\) and PLC\(_{\eta}\) (\(\eta\)1 and \(\eta\)2) \[36,60\]. The amino acid sequences of PLC isozymes are relatively nonconserved with the exception of two regions, known as the X and Y domains, that form the catalytic core and are associated to various combinations of regulatory domains that are common to many other signalling proteins. In more detail, in \(\gamma\)-type isozymes, this region contains two additional Src homology 2 (SH2) domains and one SH3 domain, which bind phosphorylated tyrosine residues and proline-rich sequences, respectively \[60\]. All PLC isoforms, with the exception of PLC\(_{\epsilon}\), are endowed with at least one potential polyphosphoinositides binding site, the pleckstrin homology (PH) domain, which is located in the NH\(_2\)-terminal region preceding the X domain \[54\]. Moreover, the COOH-terminal region possesses a C2 domain which confers a strong Ca\(^{2+}\) sensitivity to the enzymatic activity of PLC. The C2 domain is, however, absent in the \(\gamma\)-type isoforms. In this view, four EF domains are located between the PH and X domains of all PLC subclasses but their functional significance is yet to be fully elucidated \[60\]. PLC\(_{\epsilon}\), finally, exhibits a NH\(_2\)-terminal Ras guanine nucleotide exchange factor (RasGEF)-like domain and at least one COOH-
terminal Ras binding (RA) domains that are involved in its activation.

EGCs express a variety of PLC isozymes. PLCβ1 is enlisted following GPCR binding to their specific agonists, which include a plethora of circulating autacoids: acetylcholine, ATP, ADP, thrombin, bradykinin, serotonin, angiotensin II, and anandamide. Receptor occupancy occurs in the activation of the pertussis toxin (PTX)-insensitive heterotrimeric Gαq/11 protein family. As a consequence, the Gq/11-bound PLCα1 subunit dissociates from the Gαq dimer and activates the enzyme.

A remarkable exception is provided by the proteinase-activated receptor 1, which utilizes both Gαi2/3 and Gαq/11 to trigger Ca²⁺ signals in thrombin-stimulated ECs, albeit only the former leads to InsP₃ production. The Gq/11-dependent activation is mediated by the Gαq dimer, which may recruit all PLC-β subtypes with the exception of the β4 isoform. This mechanism is also involved in PLCβ engagement by the PTX-sensitive family of G-proteins, as observed in ECs exposed to S1P.

PLCγ1 is the main γ-type expressed in ECs, with PLCγ2 being primarily restricted to cells of the hematopoietic lineage. PLCγ1 is the isozyme mediating the increase in [Ca²⁺] elicited in vascular endothelium by growth factors, such as epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). Upon growth factor binding to its cognate receptor, PLC-γ1 is recruited to the activated receptors via SH2-domain-mediated phosphorytrosine interaction and then subjected to phosphorylation by receptor tyrosine kinase. It has, however, been reported that PLC-γ1 may be also stimulated by GPCR in ECs. For instance, it may associate with the COOH-terminal intracellular domain of the bradykinin BR receptor (B2), which results in a transient phosphorylation and InsP₃ production. On the other hand, VEGF has been recently shown to elicit PLCβ3 lipase activity upon binding to VEGFR-2 (KDR), which in turn physically interacts with Gαi1 proteins to induce Gαi1 disassociation from Gα subunits. Gβγ may thus stimulate PLCβ3 to generate InsP₃ and trigger an intracellular Ca²⁺ wave.

PLCγ1 has been so far detected in a limited number of vascular beds, although its ability to evoke InsP₃-dependent Ca²⁺ mobilization has been proved only in human umbilical vein ECs (HUVECs) transfected with PLCγ1-containing plasmids. While there is no report of PLCγ expression in ECs and PLCζ is present almost exclusively in mammal sperms, PLCζ may promote angiogenesis in a mouse model of adenocarcinoma, but its role in Ca²⁺ signaling has not been explored. It is, however, remarkable that β2-adrenergic excitation results to InsP₃-dependent Ca²⁺ discharge upon recruitment of the exchange protein activated by cAMP-1 (Epac-1), which has long been known to stimulate PLCζ. In agreement with PLC activation by both GPCRs and TKRs, InsP₃ production has been evaluated in a variety of stimulated ECs. In [³H]myoinositol-labeled cultured cells, both thrombin and histamine-induced increases in InsP₃ occurred in less than 15 s, and were temporally correlated with the Ca²⁺ signals. Bradykinin and ATP also evoked an elevation in InsP₃ concentration, which attained a peak value at 15 s after agonist application and then decayed to a plateau level with kinetics similar to those of the ensuing Ca²⁺ signals. The same methodology revealed that platelet activating factor (PAF)-induced InsP₃ formation is maximal after 1 min of stimulation. Similarly, a radioreceptor assay of InsP₃ accumulation in ECs revealed that VEGF induced a rapid increase in InsP₃ levels, which achieved a peak after 4 min of exposure. Due to the objective difficulties entailed by these pioneering measurements, it is unlikely that they truly reflect the dynamics of agonists-induced InsP₃ accumulation in vascular ECs. A more recent investigation, based on an innovative analytical method, revealed that InsP₃ levels peak within < 1 s from ATP stimulation and then rapidly subside due to degradation to lower order inositol phosphates. Besides agonist stimulation, InsP₃ production in vascular ECs may be stimulated by reactive oxygen species (ROS), such as O₂⁻ and H₂O₂.

In addition to extracellular agonists, mechanical stimuli may induce InsP₃ formation in vascular endothelium. Cyclic strain was found to elicit a transient spike of immunoreactive InsP₃ in bovine aortic ECs (BAECs): peak levels occurred 10 s after the initiation of strain and decayed to control values 25 s later. Moreover, BAEC exposure to shear stress induced a biphasic increase in intracellular InsP₃ concentration, whereas a transient InsP₃ peak arising within the first 15 s was followed by a major peak observed at 15 min after the onset of the stimulus. InsP₃ levels returned to pre-shear stress level within the following 15 min. Recent studies have demonstrated that the vascular system is endowed with mechanosensitive GPCRs translating mechanical stimuli into an InsP₃-dependent Ca²⁺ mobilization. Consistently, shear stress induces bradykinin B2 receptor to undergo a conformational transition that triggers the downstream signaling cascades, i.e., InsP₃ and DAG production, even in the absence of the agonist. The kinetics of InsP₃ synthesis under these conditions, however, has not been determined.

Once produced by PLC isozymes, InsP₃ diffuses into the cytosol and evokes a short-lasting Ca²⁺ efflux from ER. InsP₃-induced Ca²⁺ mobilization from ER has been characterized both in saponin-permeabilized ECs loaded with Ca²⁺ and intact ECs perfused with caged InsP₃ via a patch pipette. The release of Ca²⁺ by this second messenger displayed an EC₅₀ around 1 µmol/L and was independent of InsP₃ metabolism. InsP₃ acts on a tetramer receptor characterized by a very long cytosolic NH-terminal tail that contains the InsP₃-binding site, which has been crystallized recently. Three InsP₃ receptor subtypes have been identified that may assemble to form either homo- or hetero-tetrameric Ca²⁺-releasing channels. InsP₃ binds to the very long cytosolic NH-terminal tail, while the proper Ca²⁺ channel is located in the COOH-terminal portion of the molecule, which contains
Moreover, InsP₃s in conditions such as hypertension, whereas ECs isolated from them are more sensitive to ligand binding and, thereby, in vivo gating is regulated by both InsP₃ and Ca²⁺. InsP₃s can activate InsP₃Rs, which results in the increase of InsP₃ release and Ca²⁺ release even at saturating InsP₃ concentrations[102]. Such a biphasic dependence on ambient Ca²⁺ is due to two independent Ca²⁺-binding sites that mediate channel activation or closure, respectively. More specifically, InsP₃ tunes InsP₃R sensitivity to cytosolic Ca²⁺: it favors Ca²⁺ binding to the stimulatory site, which is the trigger for pore opening, and inhibits Ca²⁺ binding to the inhibitory one[102,104]. Consistent with this model, InsP₃-induced Ca²⁺ mobilization is enhanced at lower (200 nmol/L) than at higher (2 μmol/L) Ca²⁺ concentrations in saponin-permeabilized BAECs[106]. The large modulatory domain between the InsP₃-binding site and the channel-forming region presents consensus sequences for numerous protein kinases, including PKC, protein kinase A (PKA), cGMP-dependent protein kinase (PKG), Akt kinase, calmodulin-dependent protein kinase II (CaMKII), tyrosine kinases, and cyclin-dependent kinase 1/2/cyclin B complex[102]. Additionally, InsP₃ channel activity is sensitive to a variety of modulators, including ATP, redox balance, and luminal Ca²⁺, and interacting proteins, such as calmodulin, Ca²⁺-binding proteins (CaBPs), chromogranins, InsP₃R binding protein released with inositol-1,4,5-trisphosphate (IRBIT), RACK1 and Gp96, ERp44, FKBP12, cytochrome C, Bcl-2 proteins, huntingtin, adapter proteins (ankyrin, homer, protein 4.1N), and proteases (aspartase and calpain) [106]. As to vascular ECs, PKC and CaMKII block InsP₃-dependent Ca²⁺ release via ATP-dependent phosphorylation of InsP₃Rs[107][108]. Conversely, PKA and mammalian target of rapamycin (mTOR) phosphorylate InsP₃Rs to render them more sensitive to ligand binding and, thereby, increase the velocity of InsP₃-dependent Ca²⁺ waves[109][110]. In addition, an InsP₃R-ankyrin complex has been detected in cells exposed to hyaluronic acid (HA). Such stimulation favors the ankyrin-mediated recruitment of ER InsP₃Rs to the transmembrane™ domain motif and the loop connecting helices 5 and 6 folding back into the membrane[102]. The molecular mass of each InsP₃R isoform is around 260 kDa[103,104], which indicates that the native protein is around 1 MDa[102]. The Hill coefficient for InsP₃-ejected Ca²⁺ release is around 3.8 and suggests that InsP₃ binding to all subunits is required to induce channel opening[99]. All InsP₃R subtypes have been detected in ECs (Table 1), both under culture conditions[104-106] and in intact vessels[107,108]. The expression pattern of InsP₃R isoforms in both freshly isolated and cultured ECs is: InsP₃R-3 > InsP₃R-2 > InsP₃R-1[106]. This feature becomes even more remarkable in proliferating cells, which suggests that distinct isoforms may impact on different aspects of EC physiology[106]. In this view, recent work has revealed that InsP₃Rs forms mostly, albeit not exclusively, homotetramers in vascular ECs[109]. The subcellular localization of InsP₃R subtypes may vary with cell isolation and culture. In cultured ECs, InsP₃R-1 is mainly localized to the ER, InsP₃R-2 resides within the nucleus, and InsP₃R-3 is detected at the perinuclear region[109], while, in the intact vascular wall, all isoforms are tightly associated to F-actin fibers and InsP₃R-1 and InsP₃R-2 lie along with InsP₃R-3 near the edge of the nucleus[107]. None of the three subtypes has been detected in close association with the plasma membrane[104,107], although some studies have reported a protein with a high homology to the InsP₃-R in endothelial caveolae via binding to F-actin[104][109]. Such plasmalemmal InsP₃s might mediate the InsP₃-gated Ca²⁺ entry originally described by Vaca and Kunze[111]. Moreover, InsP₃-R1 may be associated to the EC side of myoendothelial junctions in vivo and thus plays a key role in transmitting intracellular Ca²⁺ waves from vascular endothelium to the adjoining smooth muscle cell layer[108]. InsP₃R expression may be altered under pathological conditions, such as hypertension, whereas ECs isolated from spontaneously hypertensive rats display an increase in InsP₃-R2 transcripts and a decrease in InsP₃-R1 mRNA[112]. Moreover, InsP₃R levels augment as a consequence of ethanol metabolism and oxidative stress[113]. InsP₃-R gating is regulated by both InsP₃ and Ca²⁺. InsP₃s are able to activate InsP₃Rs when the surrounding Ca²⁺ is between 50 nmol/L and 200 nmol/L, whereas higher Ca²⁺ levels inhibit Ca²⁺ release even at saturating InsP₃ concentrations[102]. Such a biphasic dependence on ambient Ca²⁺ is due to two independent Ca²⁺-binding sites that mediate channel activation or closure, respectively. More specifically, InsP₃s tunes InsP₃R sensitivity to cytosolic Ca²⁺: it favors Ca²⁺ binding to the stimulatory site, which is the trigger for pore opening, and inhibits Ca²⁺ binding to the inhibitory one[102,104]. Consistent with this model, InsP₃-induced Ca²⁺ mobilization is enhanced at lower (200 nmol/L) than at higher (2 μmol/L) Ca²⁺ concentrations in saponin-permeabilized BAECs[106]. The large modulatory domain between the InsP₃-binding site and the channel-forming region presents consensus sequences for numerous protein kinases, including PKC, protein kinase A (PKA), cGMP-dependent protein kinase (PKG), Akt kinase, calmodulin-dependent protein kinase II (CaMKII), tyrosine kinases, and cyclin-dependent kinase 1/2/cyclin B complex[102]. Additionally, InsP₃ channel activity is sensitive to a variety of modulators, including ATP, redox balance, and luminal Ca²⁺, and interacting proteins, such as calmodulin, Ca²⁺-binding proteins (CaBPs), chromogranins, InsP₃R binding protein released with inositol-1,4,5-trisphosphate (IRBIT), RACK1 and Gp96, ERp44, FKBP12, cytochrome C, Bcl-2 proteins, huntingtin, adapter proteins (ankyrin, homer, protein 4.1N), and proteases (aspartase and calpain) [106]. As to vascular ECs, PKC and CaMKII block InsP₃-dependent Ca²⁺ release via ATP-dependent phosphorylation of InsP₃Rs[107][108]. Conversely, PKA and mammalian target of rapamycin (mTOR) phosphorylate InsP₃Rs to render them more sensitive to ligand binding and, thereby, increase the velocity of InsP₃-dependent Ca²⁺ waves[109][110]. In addition, an InsP₃R-ankyrin complex has been detected in cells exposed to hyaluronic acid (HA). Such stimulation favors the ankyrin-mediated recruitment of ER InsP₃Rs via RyR1[111]. Moreover, the three subtypes has been detected in close association with the plasma membrane[104,107], although some studies have reported a protein with a high homology to the InsP₃-R in endothelial caveolae via binding to F-actin[104][109]. Such plasmalemmal InsP₃s might mediate the InsP₃-gated Ca²⁺ entry originally described by Vaca and Kunze[111]. Moreover, InsP₃-R1 may be associated to the EC side of myoendothelial junctions in vivo and thus plays a key role in transmitting intracellular Ca²⁺ waves from vascular endothelium to the adjoining smooth muscle cell layer[108]. InsP₃R expression may be altered under pathological conditions, such as hypertension, whereas ECs isolated from spontaneously hypertensive rats display an increase in InsP₃-R2 transcripts and a decrease in InsP₃-R1 mRNA[112]. Moreover, InsP₃R levels augment as a consequence of ethanol metabolism and oxidative stress[113]. InsP₃-R gating is regulated by both InsP₃ and Ca²⁺. InsP₃s are able to activate InsP₃Rs when the surrounding Ca²⁺ is between 50 nmol/L and 200 nmol/L, whereas higher Ca²⁺ levels inhibit Ca²⁺ release even at saturating InsP₃ concentrations[102]. Such a biphasic dependence on ambient Ca²⁺ is due to two independent Ca²⁺-binding sites that mediate channel activation or closure, respectively. More specifically, InsP₃s tunes InsP₃R sensitivity to cytosolic Ca²⁺: it favors Ca²⁺ binding to the stimulatory site, which is the trigger for pore opening, and inhibits Ca²⁺ binding to the inhibitory one[102,104]. Consistent with this model, InsP₃-induced Ca²⁺ mobilization is enhanced at lower (200 nmol/L) than at higher (2 μmol/L) Ca²⁺ concentrations in saponin-permeabilized BAECs[106]. The large modulatory domain between the InsP₃-binding site and the channel-forming region presents consensus sequences for numerous protein kinases, including PKC, protein kinase A (PKA), cGMP-dependent protein kinase (PKG), Akt kinase, calmodulin-dependent protein kinase II (CaMKII), tyrosine kinases, and cyclin-dependent kinase 1/2/cyclin B complex[102]. Additionally, InsP₃ channel activity is sensitive to a variety of modulators, including ATP, redox balance, and luminal Ca²⁺, and interacting proteins, such as calmodulin, Ca²⁺-binding proteins (CaBPs), chromogranins, InsP₃R binding protein released with inositol-1,4,5-trisphosphate (IRBIT), RACK1 and Gp96, ERp44, FKBP12, cytochrome C, Bcl-2 proteins, huntingtin, adapter proteins (ankyrin, homer, protein 4.1N), and proteases (aspartase and calpain) [106]. As to vascular ECs, PKC and CaMKII block InsP₃-dependent Ca²⁺ release via ATP-dependent phosphorylation of InsP₃Rs[107][108]. Conversely, PKA and mammalian target of rapamycin (mTOR) phosphorylate InsP₃Rs to render them more sensitive to ligand binding and, thereby, increase the velocity of InsP₃-dependent Ca²⁺ waves[109][110]. In addition, an InsP₃R-ankyrin complex has been detected in cells exposed to hyaluronic acid (HA). Such stimulation favors the ankyrin-mediated recruitment of ER In...
sP-Rs into plasmalemmal caveolae; an event that triggers Ca2+ release independently on agonist binding119. InsP\textsubscript{3}-R modulation in ECs may be further accomplished by the gasotransmitters, NO and H\textsubscript{2}S. While the former induces Ca2+ release likely \textit{via} receptor S-nitrosylation120,121, the latter inhibits InsP\textsubscript{3}-induced Ca2+ discharge probably through receptor S-sulphydrilation122,123. An additional post-translational modification of endothelial InsP\textsubscript{3}Rs is provided by S-glutathionylation, which might sensitize the receptor to the basal level of InsP\textsubscript{3}124. In this view, the InsP\textsubscript{3}R may be directly regulated by ROS, which may oxidize the two highly conserved thiol groups located in the COOH-tail of the protein103. It has, indeed, been shown that Ca2+ release from endothelial InsP\textsubscript{3}R may be evoked by H\textsubscript{2}O\textsubscript{2}155-57, which may increase the sensitivity of the intracellular Ca2+ pool to InsP\textsubscript{3}59.

RyRs and cADPr

Although InsP\textsubscript{3}-R is the predominant ER Ca2+-releasing channels in ECs, RyR-dependent signalling has also been reported in vascular endothelium. Three RyR isoforms have been identified (RYR-1, RYR-2, RYR-3) which assemble as homo-tetrameric channels consisting of four 560-kDa polypeptides125. They possess a very large cytosolic NH\textsubscript{2}-domain comprising around 90% of the receptor amino acid sequence. This region is part of a macromolecular complex and serves as a scaffold for numerous regulatory or modulatory proteins, such as calmodulin, calstabin, sorcin, and presents binding sites for cytosolic ions and modulators, including Ca2+, Mg2+, and adenine nucleotides. RyRs may also be modulated by SR luminal Ca2+, which increases their open probability and leads to Ca2+ release112. RyR-3 is the predominant ER Ca2+-releasing channel in ECs exposed to either caffeine72,138 or ry-anodine52,133. Similarly, RyR contribution to agonists-induced Ca2+ signals has been detected in some44,47,122,134,135 but not all ECs72,136,137. RyR-dependent signaling might be masked by SERCA activity, so that Ca2+ ions liberated into the cytosol by RyR opening are immediately sequestered into the InsP\textsubscript{3}-sensitive region of ER lumen by its Ca2+-ATPase139. In addition, monitoring of subplasmalemmal and perinuclear Ca2+ levels revealed that RyR-sensitive Ca2+ mobilization may selectively occur beneath the plasma membrane, but not in the bulk cytosol138. Indeed, RyRs may be part of a subplasmalemmal Ca2+ control unit (SCCU), as confirmed by their localization in the ER membrane facing the cytosolic leaflet of the plasma membrane (see above). The SCCU enables a functional coupling between RyRs expressed on superficial ER and plasmalemmal NCX, so that Ca2+ released from RyRs is vectorially pumped out by NCX without affecting [Ca2+]\textsubscript{i}. Under these conditions, RyR contribution to endothelial Ca2+ signaling may be appreciated only upon NCX inhibition135,138,139 or by monitoring the local activation of large conductance Ca2+-dependent K+ channels140,141. Besides CICR, RyRs may be stimulated by cADPr142, a second messenger that can be generated in response to either agonist stimulation142 or oxidative stress through the synthesis of H\textsubscript{2}O\textsubscript{2}143,144. The ADP ribosyl cyclase, CD38, which is located both on the cell surface and on intracellular membranes, catalyzes nicotinamide adenine dinucleotide (NAD) conversion into cADPr by a cyclization reaction occurring at neutral pH142. cADPr, in turn, acts by displacing the FK506 binding protein 12 (FKBP12 or calstabin1) or its related isoform FKBP12.6 (FKBP12.6 or calstabin2) from RyRs48, which increases their open probability and leads to Ca2+ release125. A recent study has demonstrated that bradykinin induces Ca2+ release by stimulating cADPr synthesis and RyR activation in human coronary artery ECs47. Moreover, genetic ablation of FKBP12/12.6 from endothelial RyRs caused an intracellular Ca2+ leak associated with the impairment of NO production and endothelial dysfunction145,146. It is, however, yet to demonstrate that cADPr triggers Ca2+ release by dissociating FKBP12/12.6 from RyRs in ECs. It should also be noticed that a number of studies have failed to find direct activation of RyRs by cADPr, as discussed previously48. For instance, cADPr has been reported to promote the activity of the SERCA pump, thereby increasing the rate of ER refilling and Ca2+ release \textit{via} the luminal excitation of RyRs148. Mechanical stimulation may also lead to RyR activation in vascular ECs. More specifically, shear stress may induce oscillations in [Ca2+]\textsubscript{i} by stimulating the interplay between mecano-sensitive Ca2+ influx and RyRs through the CICR mechanism52.

NAADP and two-pore channels

NAADP is the newest and most efficacious member of the family of Ca2+-mobilizing messengers, being active already at nanomolar concentrations53. NAADP is synthe-
sized from NADP by CD38 in a base-exchange reaction occurring at acidic pH and targets acidic organelles, such as the endolysosomal Ca\(^{2+}\) storage compartment\(^{[53,142]}\), although other signaling pathways may control NAADP production\(^{[53]}\). Ca\(^{2+}\) is sequestered into lysosomal lumen by a putative Ca\(^{2+}\)/H\(^+\) exchanger, which is driven by a vacuolar-H\(^+\) ATPase\(^{[53]}\). NAADP-gated Ca\(^{2+}\) release is mediated by TPC2, whose primary sequence places them in the superfamily of voltage-gated cation channels. Hydropathy analysis has revealed that the full-length protein contains 12 putative TM (TM) \(\alpha\) helices that are organized into two homologous domains of six TM segments, each with a membrane re-entrant pore loop between the fifth and sixth segments. Although three TPCs have been identified (TRPC1-3), only TPC2 is endowed with both high (5 nmol/L) and low (10 \(\mu\)mol/L) affinity binding sites for NAADP and is selectively targeted to lysosomes\(^{[53]}\). Due to the limited amount of Ca\(^{2+}\) in the endolysosomal compartment, which consists of small vesicles (0.2-1 \(\mu\)m in diameter) moving throughout the cytosol, NAADP-induced Ca\(^{2+}\) signals per se appear as scattered, discrete events\(^{[53]}\). The relatively small quantity of Ca\(^{2+}\) mobilized by endolysosomes may, however, be amplified into a global Ca\(^{2+}\) wave by recruitment of InosP3Rs and RyRs via CICR\(^{[53,147]}\). This feature requires the physical proximity between the NAADP-sensitive Ca\(^{2+}\) pool and the Ca\(^{2+}\)-releasing channels on ER, that has been documented in a number of cell types\(^{[53]}\). NAADP has recently been involved in endothelial Ca\(^{2+}\) signaling (Table 1). A cell-permeable NAADP analog induced an increase in [Ca\(^{2+}\)] cytosol, NAADP-induced Ca\(^{2+}\) influx of 2.8 pS in 100 mmol/L Ba\(^{2+}\), and is sensitive to the inhibition of NAADP-dependent signalling\(^{[53]}\).

Ca\(^{2+}\) ENTRY FROM THE EXTRACELLULAR SPACE

Ca\(^{2+}\) influx across the plasma membrane sustains the Ca\(^{2+}\) response to both chemical and mechanical stimuli in ECs, as well as most other nonexcitable cells. In addition to refilling the intracellular Ca\(^{2+}\) stores, Ca\(^{2+}\) influx is responsible for the activation of Ca\(^{2+}\)-sensitive effectors which are strategically located near the inner mouth of endothelial Ca\(^{2+}\) channels\(^{[6,9,11,62]}\). Ca\(^{2+}\) entry in vascular endothelium may be mediated by voltage-operated Ca\(^{2+}\) channels (VOCs), agonist-operated Ca\(^{2+}\) channels (AOCs), and mechanosensitive channels (MSCs)\(^{[7,11,13,62]}\). AOCs, in turn, comprise at least three types of Ca\(^{2+}\)-permeable membrane pathways, which may be gated by distinct signaling mechanisms: (1) receptor-operated channels (ROCs), which are ionotropic receptors activated by direct binding of the ligand; (2) second-messenger-operated channels (SMOCs), which are stimulated by intracellularly generated mediators, such as DAG, AA and its derivatives (eicosanoids and anandamide), ADPr, and cyclic nucleotides; and (3) SOCs, which open in response to a deletion of the ER Ca\(^{2+}\) pool. Most, but not all, endothelial SMOCs, as well as MSCs, belong to the TRP family of nonselective cation channels\(^{[4,19,48,159]}\), whereas the molecular nature of SOCs is still debated\(^{[151,152]}\). The inrush of Ca\(^{2+}\) ions consequent to the opening of Ca\(^{2+}\),permeable membrane route is governed by the following equation:

\[
\Delta F_c = 2 \times F \times N \times p \times \frac{1}{\gamma^2} \times (V_m - E_{Ca})
\]

where \(\Delta F_c\) is Ca\(^{2+}\) influx, \(V_m\) is the membrane potential, \(E_{Ca}\) is the equilibrium potential for Ca\(^{2+}\), \(F\) is the Faraday constant, \(N\) is the number of channels, \(p\) and \(\gamma\) respectively, are their open probability and conductance\(^{[7]}\). Ca\(^{2+}\) entry may, therefore, be modulated by any change in \(V_m\) according to the following general rule: hyperpolarization increases the driving-force pushing Ca\(^{2+}\) into the cytosol, while depolarization reduces Ca\(^{2+}\) influx across the plasmalemma\(^{[7,13]}\). This rule, however, may not apply to microvascular ECs, which may be endowed with VOCs, as depicted below. We refer the reader interested in the ion channels controlling endothelial \(V_m\) to a number of exhaustive and relatively recent reviews\(^{[5,153]}\). The description of the Ca\(^{2+}\)-permeable membrane pathways in ECs will be addressed by focusing on the following topics: (1) VOCs; (2) ROCs; (3) cyclic-nucleotide-gated channels, which belong to SMOCs; (4) TRP channels, which comprise SMOCs, SOCs, and SACs; and (5) Orai1 and Stim1, which mediate SOCs.

Voltage-gated Ca\(^{2+}\) influx in ECs

Although classically considered as non-excitable cells, ECs from capillaries, but not from large vessels, may express both L- and T-type VOCs\(^{[154-159]}\). VOCs have been detected in microvascular ECs from bovine adrenal glands (BAMCECs)\(^{[154-156]}\), rat and pig brain\(^{[160,161]}\), rat and mice lungs\(^{[162,164,165]}\). The following features suggest that the voltage-gated currents measured in BAMCECs belong to the L- and T-type described in endocrine secretory cells: their kinetic and gating properties, current-voltage relationships, sensitivity to BAY K 8644, nifedipine, and amiloride, and their different selectivity for Ba\(^{2+}\) and Ca\(^{2+}\)\(^{[154]}\). The T-type transient current displayed a conductance of 8 pS and may contribute to depolarization-induced Ca\(^{2+}\) influx\(^{[155,166]}\). while the L-type large current manifests a single-channel conductance of 20 pS and is affected by dihydropyridines\(^{[154]}\). Besides T- and L-type VOC, BAMCECs express a voltage-dependent Ca\(^{2+}\) channel (termed SB) that shows a single-channel conductance of 2.8 pS in 100 mmol/L Ba\(^{2+}\) and is sensitive to BAY K 8644, but not nicardipine\(^{[154]}\). Such a path-
way is operative at negative resting potentials and might contribute to low-threshold Ca\(^{2+}\) inflow\(^{[154]}\). Pulmonary microvascular vascular ECs (PMVECs) exhibit a Ca\(_{\alpha 2.1}\) voltage-gated T-type Ca\(^{2+}\) current that is transiently activated at \(\geq -60\) mV and peaks at around -10 mV\(^{[158,159]}\). Although \(\alpha_{\text{TO}}\) may mediate T-type voltage-dependent Ca\(^{2+}\) currents without any interaction with its ancillary proteins (\(\beta_3, \gamma_2, \text{and } \alpha_\delta\) subunits), \(\alpha_\delta\)\(\beta_3\)- and \(\beta_2\)- but not \(\beta_3\)-subunits are expressed in PMVECs\(^{[158]}\).

The window current of T-type Ca\(_{\alpha 2.1}\) channels occurs at membrane potentials ranging from -60 mV to -30 mV, a voltage interval that may be achieved in ECs challenged with extracellular agonists when their \(V_m\) is close to the K\(^+\) equilibrium potential, i.e., -70/-80 mV\(^{[157]}\). Therefore, it is well suited to mediate prolonged Ca\(^{2+}\) entry through T-type Ca\(_{\alpha 2.1}\) channels\(^{[157]}\). Ca\(^{2+}\) entry through T-type Ca\(_{\alpha 2.1}\) channels has also been observed in mouse pulmonary capillary endothelium, where it selectively drives P-selectin expression\(^{[163]}\). An R-type VOC has been, finally, described in canine aortic ECs, that may contribute to PAF-induced Ca\(^{2+}\) entry\(^{[157]}\). This channel does not inactivate during long-lasting depolarizations, therefore, it is well suited to mediate prolonged Ca\(^{2+}\) inflow\(^{[157]}\). It is, finally, noticeable that angiotensin II causes \(\alpha_\text{TO}\) though AT1 receptors, Ras and MEK\(^{[169]}\). This study, however, did not assess the appearance of voltage-gated Ca\(^{2+}\) signals, although it showed that mibebradil, a T-type Ca\(^{2+}\) channel inhibitor, prevented the regeneration of an injured monolayer\(^{[168]}\).

ROCs in ECs

Vascular ECs may express at least two distinct ROCs, namely the nicotinic acetylcholine (ACh) receptor (nAChR) and the purinergic P\(_X\) receptor, which are gated by ACh and ATP, respectively. These pathways are also permeable to K\(^+\) and Na\(^+\) and gate an inward current at physiological \(V_m\). Therefore, in capillary ECs endowed with VOCs, ROCs may also affect Ca\(^{2+}\) signaling by depolarizing the cells and inducing a voltage-dependent Ca\(^{2+}\) influx.

Neuronal nAChRs: nAChRs are ionotropic receptors that mediate fast cationic currents in response to their selective agonist, ACh. They are named after nicotine, a psychoactive ingredient of tobacco that can mimic the action of ACh in opening these channels. The neuronal nAChRs are pentameric channels comprising either combinations of two different types of subunit (\(\alpha\) and \(\beta\)) or five copies of the same \(\alpha\) subunit symmetrically arranged in a barrel-like configuration\(^{[169]}\). Each subunit consists of four \(\alpha\)-helical spanning domains (TM1-TM4), with TM2 of each subunit lining the receptor pore\(^{[169,170]}\). Ten \(\alpha\) isoforms (\(\alpha_1\)-\(\alpha_{10}\)) and four \(\beta\) subtypes [\(\beta_1\)-\(\beta_4\)], which may assemble in either homomeric or heteromeric configurations, have been identified\(^{[170,171]}\). The diverse stoichiometric combinations may result in ion channels displaying different pharmacological [ligand affinity and \(\alpha\)-bungarotoxin (BTX) sensitivity] and biophysical (mean open time and Ca\(^{2+}\) permeability) features\(^{[172]}\). The neuronal \(\alpha\)-BTX-sensitive nAChRs are formed by \(\alpha_7\)-\(\alpha_9\) homopentamers, are inhibited by \(\alpha\)-BTX, and display the highest Ca\(^{2+}\)/Na\(^+\) permeability ratio (P\(_{\text{Ca}}$/P\(_{\text{Na}}\))\(^{[173]}\). The non-\(\alpha\)-BTX nAChRs are heteropentamers containing at least one \(\alpha\) (out of \(\alpha_2\)-\(\alpha_6\)) and one \(\beta\) (out of \(\beta_2\)-\(\beta_4\)) subunits and exhibit a much lower P\(_{\text{Ca}}$/P\(_{\text{Na}}\)\(^{[172]}\). As reviewed by Arias et al\(^{[173]}\) and Gahring and Rogers\(^{[170]}\), ECs from both macro- and microvascular origin present a pattern of \(\alpha\) (\(\alpha_2\)-\(\alpha_5, \alpha_7\)) and \(\beta\) (\(\beta_2\) and \(\beta_4\)) isoforms consistent with the expression of both nAChR7 and nAChR3. Activation of the latter does not elicit any detectable Ca\(^{2+}\) influx in vascular endothelium\(^{[174]}\), while the former triggers a proangiogenic Ca\(^{2+}\) entry that might be exploited to enhance tissue revascularization\(^{[175]}\).

Moreover, nAChRs-mediated membrane depolarization induces VOCs-dependent Ca\(^{2+}\) influx in BAMCECs\(^{[169]}\).

P\(_X\) receptors: The ionotropic P\(_X\) receptors are channels that respond to extracellular ATP to induce membrane depolarization and an influx of Ca\(^{2+}\). Seven P\(_X\) receptor subtypes (P\(_{X1-7}\)) have been identified: each of them possesses two TM domains (TM1 and TM2) connected by a large extracellular loop and with the NH\(_2\)- and COOH-terminal tails extending into the cytoplasm\(^{[170]}\). The extracellular loop contains the ATP binding site, while TM1 and TM2 are thought to line the channel pore\(^{[170]}\). The P\(_X\) receptors assemble as homo- or heterotrimers with a range of biophysical features and functions, including different P\(_{\text{Ca}}$/P\(_{\text{Na}}\) values (which may range from 1 to 71) and rates of inactivation\(^{[173]}\). For instance, P\(_{X2}\)-mediated currents rapidly decay during prolonged exposition to ATP, whereas P\(_{X7}\) remains open for several minutes\(^{[176]}\).

Vascular ECs express all P\(_X\) receptor isoforms in both arteries and veins\(^{[177-179]}\), although P\(_{X4}\) levels are higher in the latter\(^{[178]}\). P\(_{X4}\) expression in the arterial endothelial layer undergoes a dramatic increase following balloon injury, which hints at this subunit as a key player in EC regeneration\(^{[179]}\). The electrophysiological analysis showed that channels with the electrophysiological and pharmacological properties of both P\(_{X4}\) (fast inactivation, inward rectification, conductance of around 36 pS, insensitivity to reactive blue) and P\(_{X7}\) (slow inactivation, conductance of 9 pS, linear current-to-voltage relationship, sensitivity to reactive blue) are functionally present on EC plasma membranes\(^{[180]}\). P\(_{X3}\) subunits may assemble with P\(_{X4}\) subtypes and form a heterotrimer associated to a current displaying the characteristics of a P\(_{X4}\) current\(^{[180]}\). Ca\(^{2+}\) imaging recordings demonstrated that P\(_{X4}\) is the main mediator of ATP- and flow-induced Ca\(^{2+}\) influx in vascular endothelium\(^{[181,182]}\). Shear stress induces ATP release from ECs through different mechanisms, including exoyctosis or ATP binding of casette transporters\(^{[183,184]}\) or it may stimulate a cell surface ATP-syntase\(^{[183]}\). ATP, in turn, causes a step-like elevation in [Ca\(^{2+}\)]\(^{[181,182]}\), which
leads to NO production and vasorelaxation in vitro. ATP-dependent Ca\(^{2+}\) entry is linearly correlated with the amplitude of the mechanical stimulation.

Cyclic nucleotide-gated Ca\(^{2+}\) channels

Cyclic nucleotide-gated channels (CNGs) are nonselective cation channels gated by direct binding of the cyclic nucleotides, cAMP and cGMP. There are six members of the CNGC family: four α subunits (CNGA1-4) and two β subunits (CNGB1 and CNGB3). They all share structural homology with voltage-gated channels and have six TM domains with both the NH\(_2\)- and COOH-termini facing the cytoplasm. A pore region lies between TM5 and TM6. The CNGA1-3 subunits form channels whereas CNGA4 and the two CNGB isotypes have a modulatory function. The cyclic nucleotide binding site is located at the COOH-terminal domain of each subunit. All CNGs conduct Ca\(^{2+}\) better than Na\(^{+}\), a feature which enables these conductances to affect significantly intracellular Ca\(^{2+}\) signaling. Both CNGA1, which is selectively gated by cGMP, and CNGA2, which opens in response to cAMP, are widely expressed by ECs from several vascular beds, although cultured cells undergo downregulation of both subunits. Both CAMP and cGMP levels may increase in ECs challenged with β-receptor agonists, such as epinephrine, noradrenaline and isoprenaline. Moreover, intracellular levels of both cyclic nucleotides may be raised when ECs are stimulated with adenosine and ATP, which are coupled, respectively, to A\(_2\) and P\(_{2Y}\) receptors, and VEGF, which acts through VEGFR-2. Finally, SOCS-mediated Ca\(^{2+}\) entry may lead to the intracellular accumulation of cGMP, which in turn leads to CNG opening and membrane depolarization, thus establishing a negative feedback resistant for SOC closure. CNGA2 is the main contributor to cyclic-nucleotide-induced Ca\(^{2+}\) influx in vascular endothelium stimulated with epinephrine, ATP or adenosine. CNGA2-mediated Ca\(^{2+}\) influx, in turn, results in NO production and vasorelaxation. Moreover, NO may upregulate CNGA2 levels in ECs.

TRP channels

The super-family of TRP channels comprises 28 members, which have been subdivided in six categories based on the homology of their amino-acid sequence: the TRPC (canonical; TRPC1-TRPC7), TRPV (vanilloid; TRPV1-TRPV6), TRPM (melastatin; TRPM1-TRPM8), TRPP (polycystin; TRPP1-TRPP3), TRPML (mucolipin; TRPML1-TRPML3), and the TRPA (ankyrin; TRPA1) families. They all are nonselective cation channels, with the exception of TRPM4 and TRPM5, which are only permeable to Na\(^{+}\) and K\(^{+}\) (P\(_{Na}^{\text{eff}}\)/P\(_{K}^{\text{eff}}\) < 0.05), and TRPV5 and TRPV6, which are Ca\(^{2+}\) selective (P\(_{Ca}^{\text{eff}}\)/P\(_{Na}^{\text{eff}}\) > 100). All members have the same basic structure consisting of six TM domains (TM1-TM6) with the NH\(_2\)- and COOH-termini located in the cytoplasm. Between TM5 and TM6, which are highly conserved among all the homologs, there is a re-entrant pore loop constituted by a short hydrophobic stretch lining the channel pore. This molecular architecture resembles that of the archetypal 6-TM voltage-gated channels, although TM4 lacks the conserved block of arginine residues forming the voltage sensor of transmembrane electrical potential. Most of the differences between the three families are found within the NH\(_2\)- and COOH-terminal tails. The TRPC and TRPV family members contain three or four ankyrin repeats at their NH\(_2\)-terminus, while TRPA1 contains 14 ankyrin repeats. All mammalian TRP families present a homologous sequence of around 25 amino acids immediately COOH-terminal to TM6, which has been termed TRP domain and consists of a highly conserved six-amino-acid TRP box (EWFKAR) and a proline-rich motif. The TRP domain is, however, lacking in TRPA and TRPP. TRP proteins contain a number of calmodulin/InsP\(_3\)R binding domains (CIRB) at both their NH\(_2\)- and COOH-tails, while a predicted coilcoil region may be present in both locations of TRP, TRPM, and TRPP. The TRPM family is characterized by having very long N and C termini. The latter contain enzymatic activity in some of the channels, e.g., TRPM2 has an ADP-ribose pyrophosphatase, whereas TRPM7 contains an atypical protein kinase. TRP subunits within one subfamily may assemble in either homo- or heterotetramers and this gives rise to large variability in their biophysical properties and activating mechanisms. Vascular ECs have been shown to express TRP channels from all subfamilies. More specifically, all the TRPC, all TRPV, all TRPM except TRPM5, TRP1, TRPP2 and TRPA1 are present in ECs (Tables 2-4). Endothelial TRP channels serve as polymodal cell sensors, as each TRP subunit may be engaged by more than one signaling pathway. The selective coupling to distinct downstream Ca\(^{2+}\)-sensitive decoders enables TRP-mediated Ca\(^{2+}\) influx to govern a plethora of processes in ECs. For sake of clarity, we will separately address the activating mechanisms and the main functions fulfilled by each TRP isoform in vascular endothelium.

TRPC channels

The TRPC family may be subdivided in four subfamilies according to their amino acid homology: TRPC1, TRPC2, TRPC3/6/7 (around 80% homology), and TRPC4/5 (around 60% homology). TRPC2 is a pseudogene in humans and does not fulfil any functional role in vascular ECs. TRPC channels are nonselective cation channels whose P\(_{Ca}^{\text{eff}}\)/P\(_{Na}^{\text{eff}}\) may vary from 0.9 to 9. The TRPC subunits may assemble as homo- and heterotetramers. In the latter case, they may combine with members of their own subfamily or TRPC1 may form heteromers with TRPC1, TRPC4/5 and TRPC3. Endothelial TRPC channels are activated by GPCRs and TLRs coupled to PI3- hydrolysis by PLC activation and, depending on their stimulating mechanism, may be part of either SMOCs or SOCs.

TRPC1: TRPC1 is widespread in both cultured and native ECs (Table 2), where it mainly serves as SOC and controls transendothelial permeability, although...
Table 2 Pattern of expression of transient receptor potential canonical channels in vascular endothelial cells detected by reverse transcription/polymerase chain reaction, immunostaining for cultured cells, immunohistochemistry, Western blotting, northern blots, and in situ hybridization

<table>
<thead>
<tr>
<th>Channel</th>
<th>Human pulmonary artery ECs</th>
<th>Human coronary artery ECs</th>
<th>Human cerebral artery ECs</th>
<th>Human intact mesenteric artery</th>
<th>Human glomerular ECs</th>
<th>Human preglomerular ECs</th>
<th>Human dermal microvascular ECs</th>
<th>HUVECs</th>
<th>EA.hy926 cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPC1</td>
<td>Non-selective, 16</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
<tr>
<td>TRPC2</td>
<td>2.7, 42</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
<tr>
<td>TRPC3</td>
<td>1.6, 60-66</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
<tr>
<td>TRPC4</td>
<td>1.1, 30-42</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
<tr>
<td>TRPC5</td>
<td>9, 47-66</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
<tr>
<td>TRPC6</td>
<td>5, 28-37</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
<tr>
<td>TRPC7</td>
<td>0.5-5.4, 25-50</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, ISH, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB, IC)</td>
<td>+/(RT-PCR, WB)</td>
</tr>
</tbody>
</table>

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western blotting; IC: Immunostaining for cultured cells; IHC: Immunohistochemistry; ISH: In situ hybridization; NB: Northern blotting; ECs: Endothelial cells; HUVECs: Human umbilical vein ECs.

recent studies have argued against this conclusion. TRPC1 is engaged by a number of inflammatory agonists, such as ATP, thrombin, tumor necrosis factor (TNF)-α, and angiotensin II (AngII), and by growth factors, such as VEGF and bFGF. TRPC1 may act as a SOC due to its ability to interact with InsP3Rs through several signaling cascades. The first model implies RhoA-dependent actin rearrangement, which leads InsP3Rs to couple to and gate TRPC1. RhoA activation, in turn, is induced by TRPC6 via PKCα-mediated phosphorylation. At the same time, PKCα also phosphorylates TRPC1 to enhance RhoA-dependent stimulation. Alternatively, thrombin utilizes caveolin-1 (Cav-1) to trigger TRPC1-mediated Ca2+ entry: Cav-1 scaffolding domain (CSD) enables the physical and functional interaction of TRPC1 and of InsP3R3 with Cav-1 protein within the caveolae. In this view, a recent work has demonstrated that polyunsaturated fatty acids, such as docosahexaenoic acid, may reduce store-operated Ca2+ entry (SOCE) by displacing TRPC1 from membrane caveolae lipid rafts. Finally, VEGF recruits TRPC1 via direct coupling to InsP3R2 in an angioptoeitin-1-regulated
TRPV3
> 100, 75
TRPV2
+(RT-PCR, WB, NM, IHC)
TRPV5
+(RT-PCR, IHC)
12, 172
endothelium, while
6, 90
+(RT-PCR)
TRPV4
TRPV6
+(RT-PCR)
α
acts as an SOC in vascular endothelium, but may also
with a consequent increase in the amplitude of agonist-
agonist-elicited SOCE and the increase in transendothelial
permeation, thus establishing a feed-forward loop that amplifies
turn, increases TRPC1 expression in TNF-
programme involved in the host defense to inflammatory
and PKC
nuclear factor (NF)-
over, TRPC1-gated Ca
intracellular Ca
TRPC1 must combine with TRPC4 to be operated by
both VEGFR-2 and TRPC1 to promote their co-internalization.

Table 3 Pattern of expression of transient receptor potential vanilloid channels in vascular endothelial cells as detected by reverse transcription/polymerase chain reaction, immunostaining for cultured cells, immunohistochemistry, Western blotting, and in situ hybridization

<table>
<thead>
<tr>
<th>TRPV1</th>
<th>TRPV2</th>
<th>TRPV3</th>
<th>TRPV4</th>
<th>TRPV5</th>
<th>TRPV6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCs/PNa and conductance (pS)</td>
<td>10, 35-80</td>
<td>1-3, NM</td>
<td>12, 172</td>
<td>6, 90</td>
<td>> 100, 75</td>
</tr>
<tr>
<td>Human coronary artery ECs</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR, WB, IHC)</td>
<td>+ (RT-PCR)</td>
</tr>
<tr>
<td>Human pulmonary artery ECs</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
</tr>
<tr>
<td>Human pulmonary microvascular ECs</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR)</td>
</tr>
<tr>
<td>Human cerebral microvascular ECs</td>
<td>+ (RT-PCR, IC)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR)</td>
</tr>
<tr>
<td>Human cerebral arteriolar ECs</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR)</td>
</tr>
<tr>
<td>Breast cancer derived microvascular ECs</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (RT-PCR)</td>
</tr>
<tr>
<td>Human umbilical vein ECs</td>
<td>+ (RT-PCR, WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Mouse aortic ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Mouse pulmonary artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Mouse mesenteric artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Mouse cerebral microvascular ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Mouse dermal microvascular ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Mouse carotid artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat mesenteric artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat femoral artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat pulmonary artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat renal artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat cardiac microvascular ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat cerebral artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Rat carotid artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Porcine aortic ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Porcine coronary artery ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Bovine aortic ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Bovine adrenal capillary ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
<tr>
<td>Zebrafish ventricular ECs</td>
<td>+ (WB)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
<td>+ (WB, IHC)</td>
</tr>
</tbody>
</table>

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western blotting; IC: Immunostaining for cultured cells; IHC: Immunohistochemistry; ISH: In situ hybridization; NM: Not measured; ECs: Endothelial cells.

The circulating protein, klotho, may bind to both VEGFR-2 and TRPC1 to promote their co-internalization, reduce Ca\(^{2+}\) influx and maintain endothelial integrity. A number of studies have, however, reported that TRPC1 must combine with TRPC4 to be operated by intracellular Ca\(^{2+}\) stores. This issue will be addressed below. TRPC1-mediated Ca\(^{2+}\) entry enlists calmodulin to activate the myosin light chain kinase (MLCK) and induce EC retraction, thus disassembling intercellular junctions and increasing endothelial permeability. Moreover, TRPC1-gated Ca\(^{2+}\) entry is capable of stimulating nuclear factor (NF)-κB via AMP-activated protein kinase and PKCa, so that NF-κB may initiate the transcriptional programme involved in the host defense to inflammatory stimuli and in EC resistance to apoptosis. NF-κB, in turn, increases TRPC1 expression in TNF-α-stimulated cells, thus establishing a feed-forward loop that amplifies agonist-elicted SOCE and the increase in transendothelial permeability. Similarly, AngII upregulates TRPC1 levels in an NF-κB-dependent manner in ECs. Finally, TRPC1 may be involved in endothelial tube formation both in vitro and in vivo. The expression of TRPC1 in vascular ECs may be increased by high glucose levels, with a consequent increase in the amplitude of agonist-induced Ca\(^{2+}\) influx and a dramatic impact on endothelial function in diabetic patients. TRPC1 not only serve as an MSC by assembling with TRPC4 to mediate flow-induced Ca\(^{2+}\) entry in vascular endothelium. A drop in luminal Ca\(^{2+}\) favors the translocation of the TRPC1-TRPV4 heteromeric channel from the ER to plasmalemmal caveolae, where the complex amplifies shear-stress-induced Ca\(^{2+}\) influx and augments the ensuing vascular dilation. In addition, such an enhanced vesicular trafficking of TRPC1-TRPV4 channels may contribute to endothelial SOCs. Similarly, TRPC1 may mediate stretch-induced Ca\(^{2+}\) entry after traumatic injury in microvessel endothelial cells, thereby resulting in NO synthesis and actin stress fiber formation.

TRPC3/6/7: TRPC3, TRPC6 and TRPC7 are Ca\(^{2+}\)-permeable channels that may be activated by DAG in a PKC-independent manner and may thus be regarded as SMOCs. TRPC3 and TRPC6 are widely expressed both in cultured ECs and in situ endothelium, while TRPC7 is far less abundant. DAG stimulates both in cultured ECs and in situ endothelium, thereby resulting in NO synthesis and actin stress fiber formation.
Table 4 Pattern of expression of transient receptor potential melastatin channels in vascular endothelial cells as detected by reverse transcription/polymerase chain reaction, Western blotting, and in situ hybridization

<table>
<thead>
<tr>
<th>TRPM1</th>
<th>TRPM2</th>
<th>TRPM3</th>
<th>TRPM4</th>
<th>TRPM5</th>
<th>TRPM6</th>
<th>TRPM7</th>
<th>TRPM8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCs/PNa and conductance (pS)</td>
<td>NM, NM</td>
<td>0.5-1.6, 52-80</td>
<td>0.1-10, 65</td>
<td>(Ca²⁺)-130</td>
<td>Not permeable, 25</td>
<td>Not permeable, 16-25</td>
<td>PCs/PNa=6-8</td>
</tr>
<tr>
<td>Human Pulmonary artery ECs</td>
<td>+/(RT-PCR)</td>
<td>+/(RT-PCR)</td>
<td>+/(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR, NM)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
</tr>
<tr>
<td>Human umbilical vein ECs</td>
<td>+/(RT-PCR, WB)</td>
<td>-(RT-PCR)</td>
<td>-(RT-PCR)</td>
<td>-(RT-PCR)</td>
<td>-(RT-PCR, WB)</td>
<td>-(RT-PCR, WB)</td>
<td>-(RT-PCR)</td>
</tr>
<tr>
<td>Mouse aortic ECs</td>
<td>+/(RT-PCR)</td>
<td>-(RT-PCR)</td>
<td>-(RT-PCR)</td>
<td>-(RT-PCR)</td>
<td>-(RT-PCR, WB)</td>
<td>-(RT-PCR, WB)</td>
<td>-(RT-PCR)</td>
</tr>
<tr>
<td>Human dermal microvascular ECs</td>
<td>-(RT-PCR, WB)</td>
<td>+/(RT-PCR, WB)</td>
<td>+/(RT-PCR, WB)</td>
<td>+(RT-PCR, WB)</td>
<td>+(RT-PCR, WB)</td>
<td>+(RT-PCR, WB)</td>
<td>+(RT-PCR, WB)</td>
</tr>
<tr>
<td>Mouse cerebral microvascular ECs</td>
<td>-(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
</tr>
<tr>
<td>Mouse cardiac microvascular ECs</td>
<td>-(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
</tr>
<tr>
<td>Rat cerebral artery ECs</td>
<td>+/(RT-PCR)</td>
<td>+/(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
</tr>
<tr>
<td>Rat spinal cord capillary ECs</td>
<td>+/(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
</tr>
<tr>
<td>Rat mesenteric artery ECs</td>
<td>+/(RT-PCR)</td>
<td>+/(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
<td>+(RT-PCR)</td>
</tr>
</tbody>
</table>

RT-PCR: Reverse transcription/polymerase chain reaction; WB: Western blotting; IHC: Immunohistochemistry; ISH: In situ hybridization; NM: Not measured; ECs: Endothelial cells.

Laxation may be attenuated by the hypoxia-reoxygenation injury of vascular ECs, which prevents TRPC3 trafficking to the plasma membrane[239]. Moreover, TRPC3 supports both spontaneous and histamine-evoked Ca²⁺ oscillations arising, respectively, during and after EC tubeule formation[240]. Finally, TRPC3-mediated Ca²⁺ influx may be inhibited by NO in a protein-kinase-G-dependent fashion[240,241], TRPC3 may also be inhibited by a PKC-mediated phosphorylation on Ser-712[239]. Both TRPC3 and TRPC6 may be recruited by signaling mechanisms other than DAG in vascular ECs. TRPC3 may provide a leakage Ca²⁺ entry pathway in unstimulated ECs[254] or behave as an SOC owing to its ability to physically interact with InsP₃R in rat aortic vascular ECs[240]. Connexin-43-mediated intercellular communication between adjacent ECs favors TRPC3/InsP₃R2 association, although via a yet to be identified mechanism[100]. Moreover, endothelial TRPC3 may assemble with its distant relative, TRPC4, and form a heteromeric channel sensitive to oxidative stress and with biophysical properties distinct from both TRPC3 and TRPC4 homomers[241,242]. Finally, TRPC3 may be activated by thapsigargin-induced ER Ca²⁺ store depletion following PLC-dependent DAG synthesis and PKCγ activation. PKCγ, in turn, engages Src tyrosine kinase to phosphorylate and gate TRPC3[243]. TRPC3 levels in vascular ECs may be downregulated by VEGF in a PI3K-sensitive manner, and upregulated by an increase in blood pressure[244,245]. TRPC6, on the other hand, may be translocated from intracellular sites to the caveolae compartment of the plasma membrane by cytochrome P450 (CYP)-derived epoxyeicosanotrienoic acids (EETs). This process enhances bradykinin-induced Ca²⁺ entry and thus prolongs the activation of small and intermediate Ca²⁺-activated K⁺ channels responsible for endothelial hyperpolarization[246]. The functional consequence of TRPC6 insertion into the plasmalemma is related to the ability of ECs to transmit their negative shift in Vm to the adjacent smooth muscle cells and trigger vasorelaxation (the so-called endothelial-dependent hyperpolarizing factor, EDHF)[247]. TRPC6 externalization may also be induced by lysophosphatidylcholine (LPC): the following Ca²⁺ influx induces TRPC5 translocation to the plasma membrane, thus allowing sustained Ca²⁺ entry into ECs[248]. TRPC5-mediated Ca²⁺ influx, in turn, is essential to restrict endothelial movement and might be relevant in impairing the healing process of the intimal layer in atherosclerotic arteries, where LPC is abundant[248]. TRPC6 externalization requires the phosphatase and tensin homolog (PTEN), whose tail 394-403 residues associate with the channel and favour its plasmameral localization[249]. It has yet to be elucidated whether EETs and LPC utilize PTEN to induce the intracellular movements of TRPC6 in ECs. Recent studies have shown that TRPC6 plays a key role in the onset of the lung ischemia-reperfusion edema (LIRE) as a consequence of endothelial NOX2-dependent ROS, which, in turns, leads to PLCγ activation, DAG kinase inhibition and an increase in submembranal DAG levels[250]. Consistently, PAF-induced lung edema depends upon the activation of acid sphingomyelinase (ASM), which engages TRPC6 to caveolae, thereby resulting in Ca²⁺ influx and following increase in endothelial permeability[251]. This process is inhibited by NO donors[251].

TRPC4/5: TRPC4 and TRPC5 form a subfamily with the closest homology with TRPC1[201]. Both channels open in response to the Gq/11 family GPCRs and TLRs, although neither InsP₃ nor DAG alone are able to activate them[250,201,252]. It has, however, been demonstrated that TRPC4 opening is favored by PI3P hydrolysis, although it also requires Gq, recruitment and intracellular Ca²⁺[253]. The scenario is further complicated by the necessity for TRPC4 to interact with the adaptor NHERF, ezrin/radixin/moesin ERM proteins, and cortical actin...
TRPV channels

The TRPV family consists of four subfamilies on the basis of their structure and function: TRPV1/2, TRPV3, TRPV4, and TRPV5/6[201]. The latter are highly Ca^2+ selective pathways, while TRPV1-4 are nonselective cation channels whose P_0/P_∞ ranges between 1 and 15 pS[202]. All TRPV channels are endowed with 3-6 NH2-terminal ankyrin repeats, which enable the protein to traffic to the plasma membrane, are required for tetramerization, and control protein-protein interactions[206]. TRPV channels may assemble either as homo- or heterotetramers, although their exact stoichiometry is not yet known[206]. TRPV1-4, which are the only isoforms expressed in vascular ECs, may be gated by a number of stimuli, including G_{0} signaling, endocannabinoids, dietary agonists, changes in temperature and osmolality, pulsatile stretch and shear stress[206]. TRPV channels are, therefore, a remarkable example of polymodal channels and may serve as both MSCs and SMOCs.

TRPV1: TRPV1 is a nonselective cation channel with a preference for calcium that can be expressed in both cultured and native ECs (Table 3). Endothelial TRPV1 channels may be activated by the dietary agonist, capsaicin, and the endogenous cannabinoid, anandamide and 2-arachidonoyl-glycerol (2-AG)[149,270,272]. TRPV1 may, therefore, serve as an SMOC, although the physiological ligands that are capable of recruiting this channel in ECs are yet to be elucidated. Pharmacological stimulation of TRPV1, either by capsaicin or anandamide, causes vascular relaxation upon release of several vasodilators, including NO[255,256], calcitonin gene-related peptide (CGRP)[276,277], and EDHF[272]. CGRP may also afford a protective effect against LPC- and lipopolysaccharide (LPS)-dependent injury[276,277]. Furthermore, TRPV1 mediates the vasorelaxing effects of the synthetic, cannabinoid-like compound, VSN16, albeit it is still unknown whether TRPV1 is engaged by VSN16 directly or via the “abnormal-cannabinoid receptor”[276]. The signaling cascade responsible for endothelial NO synthase (eNOS) activation by TRPV1 has been unravelled. TRPV1 may trigger Ca^2+ dependent PI3K/Akt/CaMKII signalling, which leads to TRPV1 phosphorylation, increases TRPV1-eNOS complex formation, eNOS stimulation, and NO synthesis[201]. This signaling pathway might involve the AMP-activated protein kinase (AMPK), a multifunctional regulator of energy homeostasis that is phosphorylated upon TRPV1-mediated Ca^2+ influx[277]. TRPV1-induced vasodilation is impaired in obese Obese-sahw swine with the metabolic syndrome and thus could be a mechanism involved in endothelial dysfunction and development of coronary disease[277]. Chronic stimulation of TRPV1 by capsaicin enhances PKA and eNOS phosphorylation, which, in turn, results in vasorelaxation, reduces blood pressure and delays the onset of brain stroke in spontaneously hypertensive rats[206]. Moreover, dietary capsaicin reduces the high-salt-diet-induced endothelial dysfunction and nocturnal hypertension by pre-
vent the generation of O_2^- anions and NO reduction through vascular TRPV1 activation [203]. Baseline mean arterial pressures are, however, not statistically different in wild-type and TRPV1-/- mice [262,263]. Besides chemical agonists, TRPV1 may be gated by temperature higher than 40 °C in ECs [277,264]. This feature gives support to the hypothesis that TRPV1 contribute to peripheral vascular dilatation and high temperatures [16]. Conversely, a recent report described TRPV1-induced endothelin production by cultured ECs, which might cause the activation of vascular ET$_2$ receptors and increase the mean arterial pressure in vivo [285]. Finally, capsaicin opposes angiogenesis by causing G1 arrest of ECs via downregulation of cyclin D1 and inhibited VEGF-triggered signaling pathways [286]. Whether this effect depends on TRPV1 stimulation is yet to be demonstrated.

TRPV2: TRPV2 has been mainly located in vascular smooth muscle cells (VSMCs), where it may be activated by cell swelling and act as an MSc [274]. Only a few studies have reported TRPV2 expression in ECs (Table 3) and, therefore, its function in vascular endothelium is still unclear. Due to its ability to mediate Ca$^{2+}$ inflow in ECs exposed to moderate heat, however, it might aid TRPV1 to stimulate NO synthesis and peripheral vasorelaxation at > 43 °C [284].

TRPV3: TRPV3 is a polymodal channel that may be gated by either natural compounds, such as carvacrol, eugenol, and camphor, or innocuous warm temperatures (> 30 °C) [241]. TRPV3 expression has recently been shown in both in situ and cultured ECs (Table 3). In intact tissue, TRPV3 stimulation by carvacrol induces VSMC hyperpolarization via the Ca$^{2+}$-dependent opening of intermediate- (IK$_{\alpha\beta}$) and small-conductance (SK$_{\alpha\beta}$) K$^+$ channels. The consequent K$^+$ effluxes activate smooth muscle inwardly rectifying potassium channels (Kir) and amplifies the negative shift in VSMC V_m, thereby promoting arterial relaxation [287]. In human corneal ECs, TRPV3-induced Ca$^{2+}$ entry is evoked by raising bath temperature from 25 to > 44 °C [284]. If present also in vascular endothelium, this feature would render the channel capable of sensing high temperatures in peripheral circulation along with TRPV1 and TRPV2.

TRPV4: TRPV4 is the most polymodal TRP channel, being a molecular integrator of both chemical and physical stimuli [202,270] and may be expressed in both native and cultured ECs (Table 3). More specifically, endothelial TRPV4 may be activated by non-noxious temperatures (> 24 °C) [296], hypo-osmotic cell swelling [289], shear stress [290,291], cyclic strain [292,293], and pharmacologically, by the non-PKC-activating phorbol ester, 4α-phorbol-12,13-didecanoate (4αPDD) [294] and by the plant-derived flavone, apigenin [298]. Cell swelling and shear stress do not gate TRPV4 directly, but via the PLA$_2$-dependent synthesis of AA, and its subsequent metabolization to 5,6′-epoxyeicosatrienoic acid (EET) through a CYP epoxidegenase-dependent pathway [290,291,295,299]. A unique mechanism has been described in human coronary arteries isolated from patients suffering from coronary artery disease, where the endothelial TRPV4 stimulate mitochondria to release ROS, which in turn cause VSMCs to relax [300]. Conversely, TRPV4 signaling induced by mechanical strain is mediated by direct force transfer from β1 integrins to the integrin-associated transmembrane CD98 protein within focal adhesions [293]. This feature renders TRPV4 a pure MSc that can be activated within only 4 ms by external force application [203]. TRPV4-mediated Ca$^{2+}$ responses to heat and 4αPDD require an aromatic amino acid at the NH$_2$-terminal of the third transmembrane domain [299]. Recent work proposed that Cav-1 governs TRPV4 activity and location to the plasma membrane in ECs [290]. NO, PG12, and 15Kω/SK$_{\alpha\beta}$/MaxiK-mediated EDHF are vasodilatory pathways that are activated following by pharmacological activation of TRPV4 [27,291,362-364]. An alternative mechanism has been unravelled in human coronary arteries from patients with coronary artery disease, where flow-induced TRPV4 activation causes ECs to release mitochondrial ROS, thereby relaxing the adjoining VSMCs [300]. Under physiological conditions, TRPV4-mediated vasodilation, mainly via NO and EDHF production, is induced by both shear stress [27,290,291,296] and extracellular autacoids, such as ACh and UTP [127,301,303,306]. Although the cellular mechanisms linking membrane receptors to TRPV4 opening are still unclear, UTP utilizes PLA$_2$ to gate the channel [297], while PKCa mediates ACh-dependent activation [298]. Despite the evidence for TRPV4-evoked vasodilation, the baseline blood pressure is not affected in TRPV4-/- mice [298,300,306]. Nevertheless, systemic activation of the channel may induce vasorelaxation in vivo [292,303,308,309] and, eventually, lead to circulatory collapse [303]. The vasorelaxing effect of TRPV4 is more evident in rodent models of N$^\omega$-nitro-l-arginine (L-NNA)- and salt-induced hypertension [305,306-309]: this feature suggests that its main function might be to adverse excessive vasoconstricting stimuli and protect the vasculature during times of extreme stress [290]. It is, therefore, intriguing that TRPV4 is downregulated in a genetic model of salt-susceptible hypertensive rats exposed to a salt-enriched diet, whereas its function and expression are enhanced in salt-resistant rat strains [306]. In this view, apigenin might afford a protective effect on the development of cardiovascular diseases by stimulating TRPV4 to release EDHF [295]. An additional role for TRPV4-dependent Ca$^{2+}$ signals consists in driving the stress shear-induced growth of collateral vessels (arteriogenesis) which occurs as a consequence of arterial occlusion [316-318]. Ca$^{2+}$ entry may, indeed, recruit several Ca$^{2+}$-sensitive transcription factors, including nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), Kv channel interacting protein 3, calsenilin (KCNIIP3/CSEN/DREAM), and myocyte enhancer factor 2C (MEF2C) [310]. On the other hand, TRPV4-mediated Ca$^{2+}$ influx elicited by cyclic strain triggers cytoskeletal remodeling and movement necessary for cell
realignment in the vasculature[292], TRPV4 channels are extensively expressed in alveolar septal capillaries[163,131], where they control lung endothelial permeability and barrier integrity in response to intravascular and airway pressures[114,136]. More specifically, TRPV4-gated Ca2+ entry increases vascular permeability to such an extent that barrier disruption and alveolar flooding may occur[131]. Finally, TRPV4 may enable ECs to sense body temperature, because the threshold for the heat-dependent activation for this channel is set at 25-27 °C and it is activated by moderate heat in ECs[2,20,81,178,180]. The results provided by knocked out mice, however, suggest that the steady state release of NO from endothelium is not governed by such a mechanism. A recent study implicated TRPV4 in tumor angiogenesis, as Florio Pla and coworkers reported an increase in TRPV4 levels in breast tumor ECs (b-TECs) as compared to control cells belonging to a human dermal microvascular endothelial cell line (HMVEC). In particular, AA-dependent TRPV4-mediated Ca2+ influx selectively drives cell migration via remodeling of the actin cytoskeleton in b-TECs, but not in HMVECs[109].

TRPM channels

The melastatin-related TRP subfamily was named based on the first discovered member, melastatin 1 (TRPM1), the gene of which was identified from melanomas. Members of the TRPM family are divided into four groups: TRPM1/3, TRPM2/8, TRPM4/5, and TRPM6/7[20,32,59]. TRPM channels exhibit highly varying cation permeability, from Ca2+ impermeable (TRPM4/5) to highly Ca2+ and Mg2+ permeable (TRPM6 and TRPM7)[208]. All the TRPM isoforms except TRPM5 are expressed in ECs (Table 4), although only the role of TRPM2 and TRPM7 has been extensively elucidated in these cells[279]. These channels are regarded as chanzymes, as they result from the fusion of an ion-channel pore-forming domain with an enzymatic domain[200].

TRPM2: TRPM2 is a non-elective cation channel whose predominant feature is the so-called Nudix box, a consensus region for pyrophosphatases that is localized in the cytoplasmic COOH-terminal tail of the channel protein and confers a unique activation mechanism, i.e., gating by ADPr on the channel[144]. ADPr arises from breakdown of β-NAD, CD38, or other enzymes acting on cADPr and hydrolysis of ADP polymers by poly-ADP ribose glycohydrolase (PARP). TRPM2 is also activated by oxidative or nitrosative stress (e.g., H\textsubscript{2}O\textsubscript{2})[114], perhaps mediated by mitochondrial ADPr. Therefore, TRPM2 serves as a sensor for the intracellular redox status by mediating oxidative-stress-induced Ca2+ entry and triggering the subsequent Ca2+-dependent elevation in endothelial permeability[4,208,320]. This chain of reactions is suppressed by a truncated TRPM2 isoform (TRPM2-S), generated by alternative splicing of the full-length protein (TRPM2-L)[114]. Moreover, TRPM2 may underlie neutrophil-elicted increase in endothelial [Ca2+], which is a prerequisite for transendothelial migration and, consequently, for sepsis-induced increase in lung vascular permeability[321]. The NH\textsubscript{2}-terminal domain possesses a calmodulin-binding site which renders the channel sensitive to changes in sub-plasmalemmal Ca2+, which shifts the dose-response curve to ADPr to the left[144]. In addition, the NH\textsubscript{2}-terminal cytosolic tail of TRPM2 also contains a high affinity binding site for PKCa, which rapidly colocalizes with TRPM2-S in ECs challenged with H\textsubscript{2}O\textsubscript{2}[321]. PKCa might, thus, increase TRPM2-mediated Ca2+ influx and increase in endothelial permeability by phosphorylating TRPM2-S[4,121].

TRPM4: TRPM4, which is expressed as two splice variants, TRPM4a (non functional) and TRPM4b (functional, traditionally referred to as TRPM4), which is selective for monovalent cations, with an order of permeability Na+ > K+ > Cs+ > Li+, but not for Ca2+[200,321]. TRPM4 is present in both intact vessels and cultured ECs (Table 4) and is gated by cytosolic Ca2+ with a K\textsubscript{50} ranging from 0.4 to 9.8 μmol/L[322]. Therefore, TRPM4 represents the long-sought Ca2+-activated nonselective cation channels[200].

A short stretch of six acidic amino acids in the pore loop determines its monovalent selectivity[202]. We refer the reader to other recent and comprehensive reviews for the molecular details of TRPM4 modulation in cell types other than ECs[322,123]. Briefly, the Ca2+-dependent activation is regulated by ATP, Ca2+-calmodulin, and PKC. The current-voltage exhibits a large outward rectification, indicative of a voltage-dependent behavior which is further enhanced by increasing the temperature between 15 and 35 °C. PIP\textsubscript{2} also modulates channel activity by influencing its Ca2+ and voltage sensitivity[322]. The main function attributed to TRPM4 in ECs is that, when activated, it protects against Ca2+ overload by depolarizing the cell, thereby decreasing the driving force for Ca2+ entry. It has, however, recently been shown that TRPM4 plays a crucial role in promoting EC death. TRPM4 is upregulated in capillary ECs of injured spinal cord, which leads to microvessel fragmentation, formation of satellite (petechial) hemorrhagic lesions, and secondary hemorrhages[124]. In addition, TRPM4 mediates LPS-induced EC death by a yet to be unveiled mechanism[322].

TRPM7: TRPM7 is a nonselective cation channel that exhibits moderate permeability to Mg2+ (albeit at very low conductances) and is, therefore, involved in intracellular Mg2+ homeostasis[204]. In addition, TRPM7 is permeable to Zn2+, Co2+, and Mn2+, thereby providing a membrane pathway for metal ions[323]. TRPM7 might form either homo- or heteromultimers with its close homolog TRPM6, and has been found both in \textit{in situ} and \textit{in vitro} ECs (Table 4). Similar to TRPM2, TRPM7 serves as a chanzyme, its primary structure resulting from the fusion of a cation-selective ion channel pore with a COOH-terminal region possessing homology to a unique family of serine/threonine kinase domains, named the α-kinase family[200,324]. The enzymatic activity of the α-kinase domain is not required for pore opening, although evidence
exists that it may have an alternative means of influencing channel gating \cite{328,229}. The mechanism underlying the constitutive activation of the channel is, therefore, still unresolved \cite{328}. The phosphotransferase activity of the kinase domain is, nevertheless, able to respond to local changes in free Mg²⁺ occurring as the result of Mg²⁺ flux through the channel. TRPM7 might, therefore, act as “Mg²⁺ sensor” \cite{323,326}. Consistently, silencing TRPM7 mimics the effect of lowering extracellular Mg²⁺ in human microvascular ECs by impairing cell migration and arresting the cells in G0/G1 and G2/M phases \cite{225}. Similarly, TRPM7 may inhibit EC proliferation via an extracellular signal-regulated kinase (ERK)-dependent reduction in eNOS levels \cite{5}. This finding has been supported by in vitro observations performed in mice with inherited hypomagnesemia, TRPM7 upregulation is associated with endothelial dysfunction consequent to a decrease in eNOS levels and an increase in systolic blood pressure, to an augmented expression of vascular cell adhesion molecule-1 and plasminogen activator inhibitor-1, and to the downregulation of annexin-1, a downstream target of TRPM7 \cite{226}. Unlike VSMCs, the endothelial TRPM7 is insensitive to laminar shear stress \cite{330}.

TRPP channels or polycystins

The TRPP family consists of eight members, only two of which, i.e., polycystic kidney disease 2 (PKD2 or TRPP2) and PKD2-like (or TRPP3), form Ca²⁺-permeable channels \cite{204,230}. TRPP2 may, however, assemble with the non-channel protein, TRPP1 (or PKD1), in order to form a heterocomplex able to transduce laminar shear stress in intracellular [Ca²⁺] signals \cite{209,323}. Both TRPP1 and TRPP2 have been found in cultured and in situ vascular ECs (Table 5). TRPP1 is an integral membrane glycoprotein with 11 transmembrane domains, an extensive NH₂-terminal extracellular tail involved in cell-cell, cell-matrix interaction and signaling pathways, and a cytosolic COOH-terminal endowed with a coiled-coil domain \cite{331}. TRPP1 interacts with TRPP2, a six-transmembrane domain protein of the TRP ion channel family \cite{209,232}. Polycystins also interact with multiple partners, including the TRP channel subunits TRPC1 and TRPV4, as well as several elements of the cytoskeleton \cite{333}. By the coiled-coil COOH-terminal domain, TRPP2 and TRPP1 can form a functional polycystin complex in the apical cilia of both cultured and native ECs \cite{332,333}. Due to its large extracellular NH₂-terminal tail, TRPP1 has been suggested to be a mechanical sensor regulating the opening of the associated calcium-permeable channel TRPP2 \cite{325,352}. Shear-stress-induced and TRPP1/TRPP2-dependent Ca²⁺ entry, in turn, triggers NO production by recruiting PKC, Ca²⁺-calmodulin and the PI3K/Akt pathway \cite{312,313,315,316}. Moreover, TRPP2 may aid TRPC1 in mediating Ca²⁺ influx, NO production, and actin reorganization in bEnd3 cells exposed to mechanical stress \cite{209}, as aforementioned.

TRPA1 channels

TRPA1 is the sole member of the TRPA family, whose structural hallmark is represented by the 14 ankyrin repeats at its NH₂-terminus \cite{203,328}. These repeats might be required for the channel to interact with cytoskeletal components or to bind to specific agonists \cite{323}. In addition, the NH₂-terminus possesses a Ca²⁺-binding EF-domain \cite{325}. TRPA1 homotetramers assemble to form a nonselective cation channel displaying a relatively high Ca²⁺ permeability when compared with other TRP channels, including TRPV1 (Table 5). TRPA1 may be activated by electrophilic compounds such as acrolein (an active component of tear gas), alllicin (found in garlic), and allyl isothiocyanate (AITC) (derived from mustard oil). α, β-Unsaturated aldehydes produced endogenously in response to oxidative stress, such as 4-hydroxy-2-nonenal, 4-oxo-nonenal, and 4-hydroxyhexenal, also activate the channel \cite{323}. Most identified TRPA1 agonists act via covalent modification of cysteines in the NH₂-termini, with specific binding residues identified \cite{323}. In addition, TRPA1 might open in response to noxious cold (< 17 °C), but the thermosensitivity of the channel is still debated \cite{229}. TRPA1 has been detected in native ECs localized to endothelial cell membrane projections through the internal elastic lamina in the direction of VSMCs. TRPA1-mediated Ca²⁺ influx causes endothelium-dependent SMC hyperpolarization and relaxation of cerebral arteries by activating IKCa and SKCa \cite{334,335}. IKCa- and SKCa-gated K⁺ efflux, in turn, activates Kᵦ in SMCs, thus amplifying myocyte relaxation and dilation \cite{335}.

Stim1 and Orai1

The physical interaction between the ER Ca²⁺-sens, Stim1, and the plasmalemmal, Ca²⁺-permeable channel, Orai1, has recently been shown to mediate SOCE in a number of vascular ECs \cite{205,206,243,334}. Stim1 is an ER-resident type I single transmembrane protein with an NH₂-terminus located either in the ER lumen or facing the extracellular space. It contains two NH₂-terminal EF hand domains (a canonical and a hidden one) followed by a sterile α-motif (SAM) domain, the transmembrane region, three predicted coiled-coil domains comprising an ezrin-radixin-moesin (ERM) motif and at the COOH terminus, a proline-rich and a lysine-rich domain \cite{335,336}. The negatively charged NH₂-terminal EF hand domain is the Ca²⁺ sensing subunit of the protein. In the resting state, Stim1 seems to be present as a dimer in the ER membrane. The dimerization happens through the COOH-terminal coiled-coil domains. In case of store release, and subsequent Ca²⁺ dissociation from the canonical EF hand domain, further oligomerization of Stim1 through the SAM domain occurs. These Stim1 oligomers migrate towards sites of the ER that are in close vicinity to the plasma membrane, where they assemble into punctuate clusters and activate SOCE by directly binding to Orai1 \cite{335,336}. Accordingly, the latter has been found to be an essential component of SOCE by forming the pore unit of the channel in a variety of cell types \cite{335,336}, including vascular ECs \cite{205,206,338}. Orai1 is a four-transmembrane protein with intracellular NH₂ and COOH termini. In the resting state, it is present as a dimer in the plasma mem-
brane, however, the functional SOC channel seems to be formed by Orai1 tetramers. The interaction between Stim1 and Orai1 is mediated by the CRAC activation domain (CAD) located at the COOH terminus of Stim1 and the cytosolic NH2- and COOH tails of Orai1[333,338]. Accordingly, the genetic suppression of either Orai1 or Stim1 suppresses SOCE induced by either pharmacological (CaP and thapsigargin) and physiological (VEGF, thrombin) stimulation in HUVECs, EA.hy296 cells, and porcine aortic ECs[332,333,336]. This, in turn, leads to the blockade of several key steps of the angiogenic process, such as proliferation and tubulogenesis[335,336,338]. These data are supported by the finding that, under resting conditions, the ER Ca2+ sensor is homogeneously distributed throughout the cytosol, whereas emptying of the InsP3-sensitive Ca2+ reservoir in the absence of extracellular Ca2+ induces Stim1 homo-oligomerization and redistribution into sub-plasmalemmal puncta[329,328,329,339]. Both processes are recovered upon Ca2+ restoration to the bathing solution, as Ca2+ entry recharges the intracellular Ca2+ pool and inactivates Stim1[340]. Stim1 puncta in vascular EC reassemble at the same loci during repetitive cycles of ER Ca2+ depletion and refilling suggest that this process is driven by accessory proteins, such as the microtubule-plus-end tracking protein, EB1[335,336,401]. The engagement of Stim1 is, however, limited when ECs are stimulated in the presence of extracellular Ca2+, which is consistent with modest reduction in the ER Ca2+ load observed under these conditions[401,402]. An important aspect of Stim1 dynamics in ECs regards its modulation by cytosolic Ca2+: an increase in submembranial Ca2+ levels prevents Stim1 clustering, thereby impeding prolonged SOCE activity and intracellular Ca2+ overload[402]. This feature might contribute to explain the long-known inhibition of SOCE by Ca2+ microdomains arising at the mouth of the channel[332]. SOCE mediated by Stim1 and Orai1 is gated by an inwardly rectifying, Ca2+-selective current[297], whose amplitude may fall below the resolution limit of a whole-cell patch-clamp recording system[296,297]. Orai1 has two homologs in mammals, namely Orai2 and Orai3, which do not contribute to SOCE in ECs[287,304,311]. In contrast to Stim1, Stim2 has no major effect on SOCE, but might be involved in the regulation and stabilization of basal cytosolic and ER Ca2+ levels in ECs[342]. The involvement of Stim1 and Orai1 to endothelial SOCE is, however, still controversial and might depend on both the vascular bed and the cell type. For instance, recent work ruled out any detectable role for Orai1 in thrombin- and thapsigargin-induced Ca2+ inflow in mouse lung ECs[218], where SOCE activity requires functional TRPC1 and TRPC4[218]. The same study reported that, in these cells, Stim1 is mobilized into sub-plasmalemmal puncta in a TRPC4-dependent manner and, in turn, it signals TRPC1 and TRPC4 to the ER Ca2+ content.

Ca2+ EXTRUSION FROM THE CYTOSOL

A variety of pumps and exchangers fulfil the function to remove Ca2+ from the cytosol following EC stimulation, namely SERCA, NCX, PMCA, and the mitochondrial uniporter[338]. SERCA, NCX, PMCA, mitochondria may be aligned either in series or in parallel in ECs in order to remove Ca2+ from the cytosol properly, to achieve successful ER Ca2+ refilling, and facilitate SOCE by buffering sub-plasmalemmal Ca2+. These functions are facilitated by their optimal coupling to either InsP3Rs or RyRs.

Expression of SERCA, NCX and PMCA in ECs

SERCA is encoded by three different genes (ATP2A1, ATP2A2, and ATP2A3) with numerous alternative splice isoforms at the 3′ ends of the mRNA. More specifically, ATP2A1 encodes for SERCA1a-1b, ATP2A2 for SERCA2a-2c, and ATP2A3 for SERCA3a-3f[350]. The SERCA isoforms differ mainly by their affinity for Ca2+ (2b > 2a = 1 >> 3) and their Ca2+ transport turnover rates, SERCA2b having the lowest transport capacity of all SERCAs[350]. Both SERCA2a and SERCA3 have been found in isolated and in situ ECs[351,352], albeit SERCA3 transcript levels decrease during EC proliferation in culture and in hypertension[106,112]. SERCA3 expression is regulated by Ca2+ itself in a calcineurin/NFAT-dependent manner[359] and its genetic deletion leads to a decrease in agonist-induced elevation in [Ca2+], and NO synthesis[350]. The Ca2+-ATPase activity in vascular endothelium may be enhanced by NO, which considerably increases Ca2+ loading into ER lumen[359]. Moreover, ECs may be endowed with phospholamban (PLB), a 24-27-kDa phosphoprotein that is closely associated with the cardiac sarcoplasmic reticulum, where it modulates SERCA function[360]. More specifically, PLB inhibits Ca2+ uptake by SERCA in Ach-stimulated cells and dampens the endothelial-dependent vasorelaxation[360]. In addition, SERCA activity is more resistant to peroxynitrite and peroxide in ECs as compared to VSMC[361,362], a feature that may confer a protective effect during the massive production of free radicals. This protective effect is mediated by the reactivation of SERCA activity during peroxide-induced Ca2+ overload. The reactivation of SERCA activity is more efficient in ECs than in VSMC[361]. The reactivation of SERCA activity in ECs during peroxide-induced Ca2+ overload is due to the presence of a Ca2+-sensitive, Ca2+-dependent molecular switch (CaM/PS-1) that increases the activity of SERCA[361]. The switch is present in ECs but not in VSMC[361]. The Ca2+-sensitive, Ca2+-dependent molecular switch (CaM/PS-1) is present in ECs but not in VSMC[361].
radicals observed under pathological conditions, such as ischemia-reperfusion. Conversely, selective targeting of thiol groups (i.e., Cys residues) by myeloperoxidase-derived oxidants may inhibit the Ca\(^{2+}\) ATPase activity and lead to an unbalanced increase in \([\text{Ca}^{2+}]_i\), which might contribute to the endothelial dysfunction occurring during several inflammatory diseases\([360]\). In this view, oxidized and glyicated low-density lipoprotein causes SERCA oxidation, aberrant ER stress and atherosclerosis in vivo, although this detrimental chain of events is suppressed by AMPK\([364,365]\).

The Na\(^+/\text{Ca}^{2+}\) exchanger family comprises three members, namely NCX1, NCX2, and NCX3, which act by expelling one Ca\(^{2+}\) ion for the uptake of three Na\(^+\) ions (the so-called “forward-mode” of NCX). The electrochemical gradient for Na\(^+\) provides the energy necessary to drive Ca\(^{2+}\) out of the cell against its large gradient and with a stoichiometric ratio of 3 Na\(^+\) in: 1 Ca\(^{2+}\) out\([366]\). Cultured ECs may express all of the three NCX subtypes\([353,367,368]\), while the only evidence about NCX presence in situ has been reported in rat brain\([369]\). NCX expression may be upregulated by an increase in [Ca\(^{2+}\)]\(_i\)\([370]\). In addition to extruding Ca\(^{2+}\) out of the cytosol, NCX may contribute to Ca\(^{2+}\) entry when operating in the so-called “reverse-mode” (3 Na\(^+\) out: 1 Ca\(^{2+}\) in). More specifically, the close proximity between NCX and the TRPC channels, which may either physically interact\([371]\) or be clustered in limited membrane nanodomains\([372]\), causes NCX to switch into the reverse-mode upon Na\(^{+}\) accumulation beneath the plasma membrane\([373,374]\). Intriguingly, NCX-mediated Ca\(^{2+}\) entry in ECs may be stimulated by Ach\([375]\), histamine\([376]\), and VEGF\([377]\), but not by ATP\([378]\). In particular, NCX-driven Ca\(^{2+}\) influx underpins PKC\(_\alpha\) translocation to the plasma membrane, where it stimulates ERK1/2 to trigger a number of steps (proliferation, migration, and tubulogenesis) involved in VEGF-dependent angiogenesis\([378]\). It is, therefore, conceivable that NCX role in the regulation of Ca\(^{2+}\)-dependent processes in vascular endothelium may be governed by the incoming stimuli.

PMCA is encoded by four genes, termed PMCA1-4. Alternative splicing of their primary transcripts yields a large variety of PMCA proteins that differ in their kinetics and regulation\([350]\). The pump operates with high Ca\(^{2+}\) affinity and low transport capacity, with a 1:1 Ca\(^{2+}\)/ATP stoichiometry\([359]\). PMCA1 is the main isoform found in vascular endothelium, although lower levels of PMCA2 and PMCA4 may also be present\([353,355]\). PMCA-dependent Ca\(^{2+}\) clearance is triggered by local elevation in intracellular Ca\(^{2+}\), which acts by promoting the association between CaM and a specific CaM-binding domain located at the COOH terminus of the pump\([348,357]\). PMCA activity and expression is negatively regulated by endothelin-1, which may thus lead to an increase in [Ca\(^{2+}\)]\(_i\) by reducing Ca\(^{2+}\) clearance from the cytosol\([379]\). PMCA is preferentially located at caveolae on the luminal surface of ECs, and its activity is reduced by phosphatidylylserine externalization\([379,380]\). In addition to extruding Ca\(^{2+}\) across the plasma membrane, PMCA suppresses both eNOS activity and the subsequent NO production by promoting Thr-495 phosphorylation in resting and activated ECs\([381]\). PMCA activity in vascular ECs is, in turn, inhibited by \(\gamma\)-glutathionylation, which leads to a progressive raise in [Ca\(^{2+}\)]\(_i\)\([382]\). The elucidation of the role served by PMCA in endothelial signaling might benefit from the recent discovery of caloxin 1b3, a specific PMCA1 inhibitor\([382]\).

Mitochondrial Ca\(^{2+}\) uptake

Mitochondria contribute to the dynamics of Ca\(^{2+}\) signaling by aiding SERCA, NCX, and PMCA in removing Ca\(^{2+}\) from the cytoplasm during the recovery phase. Mitochondrial Ca\(^{2+}\) release mechanisms, then, return Ca\(^{2+}\) back into the cytosol, where it can be sequestered by SERCA. Indeed, there is a close functional relationship between mitochondria and ER\([383]\). This interaction is reinforced by the chaperon glucose-regulated protein 75 (grp75), which tethers ER InsP\(_3\)Rs to the voltage-dependent anion channels (VDACs) in the outer mitochondrial membrane. VDACs enable the transfer of cytosolic Ca\(^{2+}\) into the mitochondrial intermembrane space, from where the electrochemical gradient (the inner mitochondrial membrane potential is equal to about -180 mV) drives Ca\(^{2+}\) into the mitochondrial matrix mainly by two transport mechanisms\([383]\). The mitochondrial Ca\(^{2+}\) uniporter (MCU), which is located in the inner mitochondrial membrane, operates at the micromolar Ca\(^{2+}\) concentrations that are only transiently reached in cells near Ca\(^{2+}\) release channels, and might be contributed by uncoupling proteins 2 and 3 (UCP2 and UCP3) in ECs\([384]\). However, UCP2/3 buffer intracellularly mobilized Ca\(^{2+}\), but not that entering the cells via SOCs\([385]\). Mitochondrial Ca\(^{2+}\) uptake from SOCE in ECs is accomplished by a second type of MCU, which mediates Ca\(^{2+}\) uptake into mitochondria at nanomolar cytosolic Ca\(^{2+}\) concentrations and has been termed Lemt1\([386]\). This is a leucine-zipper-ER hand-containing a TM region which catalyzes the 1:1 electrogenic exchange of Ca\(^{2+}\) for H\(^+\)\([387]\). Conversely, the contribution of the so-called mitochondrial calcium uptake 1 (MICU1), which has recently been discovered by working on HeLa and HEK-293 cells\([388]\), to endothelial Ca\(^{2+}\) signaling has not been ascertained yet. The mitochondrial NCX (mNCX) is the main mechanism responsible for the outward transport of Ca\(^{2+}\) towards the cytosol with a stoichiometry of 3Na\(^+\):1Ca\(^{2+}\) (as for the plasmemmal NCX)\([389,390]\): the Na\(^+\) that enters down the electrochemical gradient is exchanged for Ca\(^{2+}\)\([385]\).

Microarchitecture of the Ca\(^{2+}\) transporting systems in ECs

The microstructural physical localization of Ca\(^{2+}\) pumps, transporters and channels in the ER and plasma membrane relative to each other determines the pattern of Ca\(^{2+}\) clearance from the endothelial cytosol\([386,391,392,393,394,395]\). This organization of the Ca\(^{2+}\) transporting systems creates Ca\(^{2+}\) gradients between the sub-plasmemmal region and bulk cytoplasm, which, in turn, enables the same second
The remarkable versatility of Ca2+ is due to the multitude of Ca2+ signals that can be generated by extracellular stimuli within a single cell. Such heterogeneity depends on the recruitment of specific components of the Ca2+ toolkit which lead to the generation of intracellular signals varying in amplitude, spatial dimension and frequency[10,39,90]. The opening of Ca2+-permeable pathways either on the ER or plasma membrane may give rise to local or elementary Ca2+ signals, which are spatially restricted within hundreds of nanometers to micrometers from the mouth of the channel pore[92]. The local nature of these events is attributable to the concerted action of Ca2+ buffering and reuptake mechanisms that limit the diffusion of the Ca2+ signal[91]. The most simple Ca2+ release events are the Ca2+ blips and the Ca2+ quarks, which arise from the opening of single InsP\textsubscript{3}Rs and RyRs, respectively[10,92]. Endothelial Ca2+ blips have average amplitude of 23 nmol/L, are 1- to 3-μm wide, and last < 100 ms[93]. Conversely, there is no report of endothelial Ca2+ quarks. The concerted opening of a fixed cluster of InsP\textsubscript{3}Rs and RyRs give rise, respectively, to Ca2+ puffs and Ca2+ sparks[10,92]. Spontaneous Ca2+ puffs have been reported in native ECs[94,98], which can be excited by adjoining SMCs through gap junctional communication[96,98]. Isolated ECs display only agonist-induced Ca2+ puffs, which reach a peak of about 50 nmol/L and spread for no longer than 30 μm[98]. Elementary Ca2+ release events mediated by InsP\textsubscript{3}Rs, but different from the classic Ca2+ puffs, may occur in restricted spaces of myoendothelial projections and have been termed Ca2+ pulsars[16,99]. The endothelial Ca2+ pulsars colocalize with the intermediate conductance, Ca2+-sensitive K+ channels (K\textsubscript{\textalpha{}c3.1}) so that local Ca2+ signals may be translated into a negative shift in V\textsubscript{m} which is rapidly transmitted to the adjacent VSMCs in terms of EDHF[99]. Consistently, sympathetic nerve stimulation activates α-adrenergic receptors on SMCs to recruit new pulsar sites in the adjoining ECs in order to oppose vasoconstriction[100]. The spatiotemporal summation of adjacent Ca2+ puffs leads to a regenerative intracellular Ca2+ wave that can spread throughout the cytosol at an average speed of 5-60 μm/s[118,83,84]. The regenerative propagation of the Ca2+ elevation is, indeed, faster in the perinuclear region and at the initiation site[118]. The endothelial Ca2+ wave tends to originate from multiple peripheral foci localized in the caveolar compartments of the plasma membrane[43]. These triggering sites remain constant during repetitive cell stimulation[39,40,42]. Indeed, when the information embedded within the [Ca\textsuperscript{2+]i increase must be conveyed over a long time, both the elementary events and the global Ca2+ sweeps can adopt an oscillatory pattern[16,72,59,96]. However, the physiological outcome of local Ca2+ spikes depends on the Ca2+-sensitive decoders located within a few nanometers from the channel pore[93] and the frequency of repetitive Ca2+ waves encodes for the selective engagement of specific downstream targets[80-83]. The interspike interval of the Ca2+ transients is inversely correlated to the strength of the stimulus until, at least at high agonist doses, they apparently fuse to generate a plateau level[16,72,80,87]. Endothelial Ca2+ oscillations may,
indeed, be elicited by mechanical forces, extracellular autacoids or oxidative stress. Shear stress and pressure may induce ECs to undergo repetitive Ca2+ transients by triggering Ca2+ entry through Gd3+-sensitive MSCs followed by CICR from RyRs[22,24,25]. The opening of the MSC generates a transient local Ca2+ event that has been termed Ca2+ hotspot[28]. Unlike the oscillatory Ca2+ response to extracellular ligands[72,406,407], the amplitude of the Ca2+ spikes increases with the intensity of the mechanical stimulation[22,25]. Agonist-evoked Ca2+ oscillations require PLC activation by eitherGPCRs or TKRs[72,35,404,405,408]. The following InsP\textsubscript{3}-dependent Ca2+ mobilization may be amplified by adjacent RyRs via CICR[34,35] and requires Ca2+ influx to supply releasable Ca2+ over time and maintain InsP\textsubscript{3} sensitivity to the ligand[72,407,408,410], Ca2+ entering through either SOCE or the reverse-mode of NCX is sequestered by SERCA into ER lumen before being released again into the cytosol through the open InsP\textsubscript{3}Rs[23,13,39,40,46,90]. Some[106], but not all[403], microvascular ECs may be independent on Ca2+ influx. In addition to bringing about the downstroke of each Ca2+ spike, SERCA shapes both the rate of the initial Ca2+ release and the amplitude of the regenerative upstroke, whereas it does not affect the Ca2+ wave speed[30,411]. As a consequence of the rhythmic interplay betweenInsP\textsubscript{3}-induced Ca2+ release and SERCA-mediated Ca2+ reuptake, SOCE is not constant during the Ca2+ train. Accordingly, storesensitive Ca2+ influx is activated by the partial depletion of the Ca2+ pool occurring during each Ca2+ spike and is then turned off by store replenishment[410,412]. Finally, ECs may display repetitive Ca2+ oscillations in response to the NAD(P)H oxidase-derived H\textsubscript{2}O\textsubscript{2} that is endogenously produced during the ischemia/reperfusion injury[50,413]. H\textsubscript{2}O\textsubscript{2}-elicited Ca2+ spikes are supported by the periodic opening of InsP\textsubscript{3}Rs, but rapidly run down in absence of extracellular Ca2+[406,413]. It would, therefore, be interesting to assess whether the H\textsubscript{2}O\textsubscript{2}-sensitive plasmalemmal channel, TRPM2, is involved in the signal transduction pathways recruited under these conditions[120].

CONCLUSION

Once regarded as an inert barrier between circulation and vascular tissue, ECs constitute the largest signal transduction platform of the organism, which is essential for the proper functioning of the cardiovascular system. Any alteration in the endothelial capability to detect and decode both physical and humoral stimuli into the most suitable vessel wall phenotype may lead to an astonishing variety of severe diseases, including myocardial infarction, brain stroke, atherosclerosis, peripheral artery disease, and tumor. As recently outlined by Munaron and Florio Pla[31], it is imperative to understand the molecular mechanisms that enable vascular ECs to fulfil their multifaceted role in order to either prevent or reduce the adverse consequences of so-called endothelial dysfunction. The Ca2+ signalling toolkit plays a key role in the control of a wide array of endothelial processes and, therefore, any change in the pattern of expression of each of its components is somehow involved in the pathogenesis of an increasing number of pathologies. Despite the most recent advances in the comprehension of the molecular underpinnings of the Ca2+ responses to both physical and chemical stimulation, a huge amount of work is standing in front of us. First, the blend of endothelial ion channels, transporters and receptors may vary with species, age, sex, hormonal status, vascular bed, and blood vessel diameter. This issue has been further stressed by the recent finding that Stim1 and Orai1 control in vitro tubulogenesis in HUVECs[206], but not in the HUV-derived EC line, EA.hy926[224]. As a consequence, the information on the Ca2+ machinery acquired on animal or cell line models cannot undergo a straightforward clinical translation, but must be confirmed in humans and in the vascular region implicated in the disease under investigation. This task may not be easy due to the difficulties of obtaining human samples from either healthy or pathological vessels. Second, the controversy on the molecular nature of SOCs, which are regarded as the most important pathway for Ca2+ influx into vascular endothelium, is far from being fully resolved. As described above, a recent study suggested that Orai1 and Stim1, whose physical interaction mediates SOCE in the immune system, underlie this Ca2+ entry route only in HUVECs, whereas TRPC1 and TRPC4 are activated by the emptying of the Ca2+ pool in other vascular beds. The same study, however, contributed to boost such controversy by demonstrating that the genetic suppression of TRPC1 dampens SOCE in HUVECs, a finding which is not consistent with those previously reported on the same preparation. This conflict is not surprising when considering the abundance of discrepant data about TRPC1 modulation by Stim1. The possibility that the molecular structure of SOCE (i.e., either the ER Ca2+ sensor and the Ca2+-permeable pore) might differ in distinct species and vascular beds, as put forward by Sundivakkam et al[218], should be also considered. Moreover, the possibility that the components of SOCE may be different in distinct phases of the cell cycle should be taken in account. Yet, it is evident that further studies will have to be devoted to clarify this issue in vascular ECs. A recent study attempted to solve this controversy by investigating the association between Orai1 and TRPC1, which has been described in a growing number of nonexcitable cells, in rat pulmonary artery ECs. In these cells, SOCE has long been associated with TRPC1 and TRPC4, as widely described above[277]. Surprisingly, Cioffi et al[414] have found that Orai1 constitutively interacts with TRPC4 and drives the activation of the TRPC1-TRPC complex upon intracellular Ca2+ release. It is not clear, however, whether and how protein 4.1 and Stim1 independently confer store-sensitivity to the ternary complex on the plasma membrane. Third, whereas the intracellular target of InsP\textsubscript{3} has long been recognized, the selective receptor of the two newly discovered second messengers, cADPr and NAADP, has recently been questioned. Indeed, a couple of recent investigations demonstrated that the genetic suppression of TPC1-2 does not prevent cell labeling by NAADP[415,416]. Conversely, the same studies suggested
that a 22- and 23-kDa pair of accessory proteins might serve as NAADP receptors and regulate the activity of its target channels, including TPC1-2 in ECs and RyRs in the immune system. The same controversy holds true also for the molecular effector of cADPR-dependent signalling in mature ECs. As mentioned already, the mechanistic link between cADPR and RyRs-mediated Ca\(^{2+}\) is yet to be elucidated. Fourth, ECs establish either transient or permanent intimate contacts with a variety of cell types, such as circulating blood cells or tumoral cells, fibroblasts, and SMCs. Only a few studies have hitherto addressed whether and how these tight relationships may affect endothelial Ca\(^{2+}\) homeostasis. In addition, ECs may undergo a rearrangement of their Ca\(^{2+}\) signaling proteins when detached from the vessel walls and cultured in vitro\(^{[13]}\). It follows that future studies should be conducted both in vitro and in vivo, by exploiting the genetic Ca\(^{2+}\)-sensors that have been described in the literature, to explore this fascinating aspect of Ca\(^{2+}\) signaling. Finally, intracellular Ca\(^{2+}\) waves have recently been shown to drive EPC proliferation, homing, and tubulogenesis. Only a few investigations have so far been devoted to unmask the players of the Ca\(^{2+}\) machinery involved in these tasks. In the light of the promising therapeutic potential of the Ca\(^{2+}\)-permeable channels in these cells, either as a target or facilitators of clinical interventions, we are confident that this field will gain the interest of researchers worldwide. Therefore, it appears that the way towards full comprehension of the intricate network of membrane receptors, ion channels, transporters, pumps, and cytosolic decoders that convert an extracellular stimulus into a meaningful Ca\(^{2+}\) signal still has a long way to go and overcome many obstacles, but a multidisciplinary approach will certainly be helpful to reach this goal.

ACKNOWLEDGMENTS
The authors are grateful to all their collaborators for the ongoing and fruitful discussions on Ca\(^{2+}\) signalling in endothelial cells and endothelial progenitor cells. They are also delighted to acknowledge Mrs Simona Laudadia for her excellent bibliographic assistance.

REFERENCES
1 Tran QK, Watanabe H. Calcium signalling in the endothelium. Handb Exp Pharmacol 2006; 145-187
7 Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 2001; 81: 1415-1459
28 Sobolewski P, Kandel J, Kliinger AL, Eckmann DM. Air

30 Lewalle JM, Cataldo D, Bajou K, Lambert CA, Foidart JM. Endothelial cell intracellular Ca2+ concentration is increased upon breast tumor cell contact and mediates tumor cell transendothelial migration. Clin Exp Metastasis 1996; 16: 21-29.

44 Mozhayeva MG, Mozhayeva GN. Evidence for the existence of inositol (1,4,5)-trisphosphate- and ryanodine-sensitive pools in bovine endothelial cells. Ca2+ releases in cells with different basal level of intracellular Ca2+. Pflugers Arch 1996; 432: 614-622.

52 Fiorio Pla A, Munarón L. Calcium influx, arachidonic acid, and control of endothelial cell proliferation. Cell Calcium 2001; 30: 235-244.

60 Munarón L. Intracellular calcium, endothelial cells and angiogenesis. Recent Pat Cancer Ther 2006; 1: 105-119.

64 Gilchrist A, Vanhaeube JF, Li A, Thomas TO, Voyer-YasenetskaT, Hamm HE. G alpha minigenes expressing
C-terminal peptides serve as specific inhibitors of thrombin-mediated endothelial activation. J Biol Chem 2001; 276: 25672-25679

71 Wilde JJ, Watson SP. Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal 2001; 13: 691-701

73 McLaughlin AP, De Vries GW. Role of PLCgamma and Ca(2+) in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol Cell Physiol 2001; 281: C1448-C1456

74 Meyer RD, Latz C, Rahimi N. Recruitment and activation of phospholipase C gamma1 by vascular endothelial growth factor receptor-2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 2003; 278: 16347-16355

78 Fleming I, Busse R. Tyrosine phosphorylation and bradykinin-induced signaling in endothelial cells. Am J Cardiol 1997; 80: 102A-109A

79 Venema VJ, Ju H, Sun J, Eaton DC, Marrero MB, Venema RC. Bradykinin stimulates the tyrosine phosphorylation and bradykinin B2 receptor association of phospholipase C gamma1 in vascular endothelial cells. Biochem Biophys Res Commun 1998; 246: 70-75

82 Mi LY, Ettenson DS, Edelman ER. Phospholipase C-delta extends intercellular signalling range and responses to injury-released growth factors in non-excitable cells. Cell Prog 2008; 41: 671-690

90 Lin AY, Rui YC. Platelet-activating factor induced calcium mobilization and phosphoinositide metabolism in cultured bovine cerebral microvascular endothelial cells. Biochim Biophys Acta 1994; 1224: 323-328

95 Rosales OR, Sumpio BE. Changes in cyclic strain increase inositol trisphosphate and diacylglycerol in endothelial cells. Am J Physiol 1992; 262: C956-C962

98 Cachisvils M, Zhang YL, Frangos JA. G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 2006; 103: 15463-15468

100 Braet K, Mabille C, Cabooter L, Rapp G, Leybaert L. Electroporation loading and photoactivation of caged InsP3: tools
to investigate the relation between cellular ATP release in response to intracellular InsP3 elevation. J Neurosci Methods 2004; 132: 81-89

104 Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87: 593-658

107 Gifford SM, Yi FX, Bird IM. Pregnancy-enhanced Ca2+ responses to ATP in uterine artery endothelial cells is due to greater capacitative Ca2+ entry rather than altered receptor coupling. J Endocrinol 2006; 190: 373-384

110 Isakson BE. Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates hetero-cellular Ca2+ communication. J Cell Sci 2008; 121: 3664-3673

116 Taylor CW, Tovey SC. IP3 receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2010; 2: a004010

118 Aronomlaran AA, Blatter LA. Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol Cell Physiol 2005; 289: C1426-C1436

120 Beliveau É, Lapointe F, Guillemette G. The activation state of the inositol 1,4,5-trisphosphate receptor regulates the velocity of intracellular Ca2+ waves in bovine aortic endothelial cells. J Cell Biochem 2011; 112: 3722-3731

121 Bourguignon LY, Singleton PA, Diedrich F. Hyaluronan-CD44 interaction with Rac1-dependent protein kinase N-gamma promotes phospholipase Cgamma1 activation, Ca(2+) signaling, and contactin-cytoskeleton function leading to keratinocyte adhesion and differentiation. J Biol Chem 2004; 279: 29654-29669

123 Volk T, Mading K, Hensel M, Koj WJ. Nitric oxide induces transient Ca2+ changes in endothelial cells independent of cGMP. J Cell Physiol 1997; 172: 296-305

128 Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 2002; 82: 893-922

136 Paltal-Doburzynska J, Frieden M, Spitaler M, Graier WF. Histamine-induced Ca2+ oscillations in a human endothelial cell line depend on transmembrane ion flux, ryanodine receptors and endoplasmic reticulum Ca2+-ATPase. J Physiol 2000; 524 Pt 3: 701-713

139 Sacks RS, Firth AL, Remillard CV, Agange N, Yau J, Ko EA,

152 Trebak M. STIM1/Orai1, ICRAC, and endothelial SOC. *Circ Res* 2009; 104: e56-e57.

177 Pulvirenti TJ, Yin JL, Chaufour X, McLachlan C, Hamblly BD, Bennett MR, Rarden JA. P2X (purinergic) receptor redistribution in rabbit aorta following injury to endothelial cells.
Moccia F et al. Ca2+ signalling in vascular endothelium

Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev 2002; 82: 769-824

Cheng KT, Chan FL, Huang Y, Chan WY, Yao X. Expression of olationary-type cyclic nucleotide-gated channel (CNGA2) in vascular tissues. Histochim Cell Biol 2003; 120: 475-481

Kwan HY, Huang Y, Yao XQ, Leung FP. Role of cyclic nucleotide-kinases in the control of cytosolic Ca levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 2009; Epub ahead of print

Maurice DH, Reisert J, Frings S. Regulation of cyclic nucleotide-gated channels: CNGA2 channel. J Mol Cell Cardiol 2008; 45: 437-445

Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and Orail mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 2008; 103: 1289-1299

Mehta D, Ahmmed GU, Paria BC, Holinast M, Voyochninasetskaya T, Tiruppathi C, Minshall RD, Malik AB. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 2003; 278: 33492-33500

Sundivakkam PC, Kwiatkow AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C. Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release in endothelial cells. Am J Physiol Cell Physiol 2009; 296: C403-C413

Ye S, Tan L, Ma J, Shi Q, Li J. Polysaturated docosahexaenoic acid suppresses oxidative stress induced endothelial cell calcium influx by altering lipid composition in membrane caveolar rafts. Prostaglandins Leukot Essent Fatty Acids 2010; 83: 37-43

associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca²+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA 2010; 107: 19308-19313

Sundivakkam PC, Freichel M, Singh V, Yuan JP, Vogel SM, Floekerzi V, Malik AB, Tiruppathi C. The Ca(2+)-sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+)-entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 2012; 81: 510-526

Yu PC, Gu SY, Bu JW, Du JL. TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 2010; 106: 1221-1232

Ma X, Cao J, Luo J, Nilisus B, Huang Y, Ambudkar IS, Yao X. Depletion of intracellular Ca²+ stores stimulates the translocalization of vanilloid transient receptor potential 4-C1 hetermeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 2010; 30: 2249-2255

Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X. Heteromorphic TRPV4-C1 channels contribute to store-operated Ca²+ entry in vascular endothelial cells. Cell Calcium 2011; 50: 502-509

Kwan HY, Huang Y, Yao X. Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 2006; 207: 315-321

Dora KA. Coordination of vasomotor responses by the endothelium. Circ J 2010; 74: 226-232

252 Plant TD, Schaefer M. Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol 2005; 371: 266-276

261 Chung LC, Chen JY, Su KH, Hsu KL, Shyue SK, Kou YR, Lin J. Ca2+ signalling in vascular endothelium: coexpression and function of vanilloid and endothelial transient receptor potential canonical 5 channels. Hypertension 2011; 58: 317-324

271 Wang Y, Wang DH. Aggravated renal inflammatory re-

293. **Matthews BD**, Thodeti CK, Tytell JD, Mamamoto A, Overby DR, Inger DE. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. *Integr Biol (Camb)* 2010; 2: 435-442.

305. **Schiellner W**, Troidl K, Apfelbeck H, Troidl C, Kasprzak PM, Schaper W, Schmitz-Rixen T. Cerebral arteriogenesis is enhanced by pharmacological as well as fluid-shear-stress activation of the TRPV4 calcium channel. *Eur J Vasc Endovasc Surg* 2011; 41: 589-596.

309. **Jian MY**, King JA, Al-Mehdi AB, Liedtke W, Townsley MI.
Mocca F et al. Ca²⁺ signalling in vascular endothelium

Zhou J. Endothelial cilia are fluid shear sensors that regulate cytoskeletal dynamics. Proc Natl Acad Sci USA 2009; 106: 20069-20074

Beech DJ. Orail calcium channels in the vasculature. Pfugers Arch 2012; 463: 635-647

Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca²⁺ levels. Cell 2007; 131: 1327-1339

Sedova M, Blatter LA. Dynamic regulation of [Ca²⁺]j by plasma membrane Ca²⁺-ATPase and Na⁺/Ca²⁺ exchange during capacitative Ca²⁺ entry in bovine vascular endothelial cells. Cell Calcium 1999; 25: 333-343

Brini M, Carafoli E. Calcium pumps in health and disease. Physiol Rev 2009; 89: 1341-1378

Anger M, Samuel JL, Marotte F, Wuytack F, Rappaport L, Lompré AM. The sarco(endo)plasmic reticulum Ca²⁺-ATPase mRNA isoform, SERCA 3, is expressed in endothelial and epithelial cells in various organs. FEBs Lett 1993; 334: 45-48

Hadži L, Ozog A, Soncin F, Lompré AM. Basal transcription of the mouse sarco(endo)plasmic reticulum Ca²⁺-ATPase type 3 gene in endothelial cells is controlled by Ets-1 and Sp1. J Biol Chem 2002; 277: 36471-36478

Khan I, Sandhu V, Misquitta CM, Grover AK. SERCA pump isofrom expression in endothelium of veins and arteries: every endothelium is not the same. Mol Cell Biochem 2000; 203: 11-15

Ozog A, Pouzet B, Bobe R, Lompré AM. Characterization of...

357 Hadri I, Pavoine C, Lipskaia L, Yacoubi S, Lompré AM. Transcription of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase type 3 gene, ATP2A3, is regulated by the calcineurin/NFAT pathway in endothelial cells. Biochem J 2006; 394: 27-33

359 Dedkova EN, Blatter LA. Nitric oxide inhibits capacitative Ca2+ entry and enhances endoplasmic reticulum Ca2+ uptake in bovine vascular endothelial cells. J Physiol 2002; 539: 77-91

371 Eder P, Poteser M, Romainin C, Groschner K. Na(+) entry and modulation of Na(+)/Ca(2+) exchange as a key mecha- nism of TRPC signaling. Pflugers Arch 2005; 451: 99-104

372 Poburko D, Famel N, Kuo KH, van Bremen C. Ca2+ signaling in smooth muscle: TRPC6, NCX and LNats in nanodomains. Channels (Austin) 2008; 2: 10-12

373 Bondarenko A. Sodium-calcium exchanger contributes to membrane hyperpolarization of intact endothelial cells from rat aorta during acetylcholine stimulation. Br J Pharmacol 2004; 143: 9-18

376 Pande J, Mallhi KK, Sawh A, Szweczyk MM, Simpson F, Grover AK. Aortic smooth muscle and endothelial plasma membrane Ca2+-pump isoforms are inhibited differently by the extracellular inhibitor caloxin 1b1. Am J Physiol Cell Physiol 2006; 290: C1341-C1349

379 Manoookitwongsa PS, Whitter EF, Wareesaingtip W, McMillan PJ, Nava PB, Schultz RL. Calcium-dependent ATPase unlike ecto-ATPase is located primarily on the luminal sur- face of brain endothelial cells. Histochim J 2000; 32: 313-324

385 Waldeck-Weirmair M, Malli R, Naghdi S, Trenker M, Kahn MJ, Graier WF. The contribution of UCP2 and UCP3 to mitochon- drial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). Cell Calcium 2010; 47: 433-440

388 Malli R, Frieden M, Hunkova M, Trenker M, Graier WF. Ca2+ refilling of the endoplasmic reticulum is largely pre- served albeit reduced Ca2+ entry in endothelial cells. Cell Calcium 2007; 41: 63-76
Moccia F et al. Ca²⁺ signalling in vascular endothelium

391 Claflam DE. Calcium signaling. Cell 2007; 131: 1047-1058

393 Häsuer J, Blatter LA. Elementary events of agonist-induced Ca²⁺ release in vascular endothelial cells. Am J Physiol 1997; 273: C1775-C1782

396 Kansui Y, Garland CJ, Dora KA. Enhanced spontaneous Ca²⁺ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 2008; 44: 135-146

397 Duza T, Sarelius IH. Increase in endothelial cell Ca(2+) in response to mouse cremaster muscle contraction. J Physiol 2004; 555: 459-469

401 Missiaena L, Lemaire FX, Parys JB, De Smedt H, Sienaert I, Casteels R. Initiation sites for Ca²⁺ signals in endothelial cells. Pflugers Arch 1996; 431: 318-324

409 Morgan AJ, Jacob R. Ca²⁺ influx does more than provide releasable Ca²⁺ to maintain repetitive spiking in human umbilical vein endothelial cells. Biochem J 1996; 320 (Pt 2): 505-517

410 Sedova M, Klishin A, Huser J, Blatter LA. Capacitative Ca²⁺ entry is graded with degree of intracellular Ca²⁺ store depletion in bovine vascular endothelial cells. J Physiol 2000; 523 Pt 3: 549-559

S-Editor Cheng JX L-Editor Kerr C E-Editor Zhang DN